. 24/7 Space News .
SHAKE AND BLOW
Massive 'lake' discovered under volcano that could unlock why and how volcanoes erupt
by Staff Writers
Bristol UK (SPX) Nov 09, 2016


Cerro Uturuncu volcano in the Bolivian Altiplano. Image courtesy Jon Blundy - University of Bristol. For a larger version of this image please go here.

Scientists from the University of Bristol and partner universities in Germany, France, Canada and Wales, have discovered a huge magmatic lake, 15 kilometres below a dormant volcano in Bolivia, South America.

The body of water - which is dissolved into partially molten rock at a temperature of almost 1,000 degrees Celsius - is the equivalent to what is found in some of the world's giant freshwater lakes, such as Lake Superior.

The find has now led scientists to consider if similar bodies of water may be 'hiding' under other volcanoes and could help explain why and how volcanoes erupt.

Professor Jon Blundy, from the School of Earth Sciences, took part in an international multidisciplinary research project at Cerro Uturuncu volcano in the Bolivian Altiplano.

He said: "The Bolivian Altiplano has been the site of extensive volcanism over past 10 million years, although there are no currently active volcanoes there.

"The Altiplano is underlain by a large geophysical anomaly at depths of 15 km below the surface of the earth.

"This anomaly has a volume of one-and-a-half million cubic kilometres or more and is characterised by reduced seismic wave speeds and increased electrical conductivity. This indicates the presence of molten rock.

"The rock is not fully molten, but partially molten. Only about 10 to 20 percent of the rock is actually liquid; the rest is solid. The rock at these depths is at a temperature of about 970 C."

In order to characterise the partially molten region the team performed high temperature and pressure experiments at the University of Orleans in France.

This measured the electrical conductivity of the molten rock in the 'anomalous' region and concluded that there must be about eight to ten percent of water dissolved in the silicate melt.

Professor Blundy added: "This is a large value. It agrees with estimates made for the volcanic rocks of Uturuncu using high temperature and pressure experiments to match the chemical composition of crystals.

"Silicate melt can only dissolve water at high pressure; at lower pressure this water comes out of the solution and forms bubbles. Crucially - these bubbles can drive volcanic eruptions.

"The eight to ten percent of water dissolved in the massive anomaly region amounts to a total mass of water equivalent to what is found in some of the giant freshwater lakes of North America."

Professor Fabrice Gaillard at University of Orleans explained: "Ten per cent by weight of dissolved water means that there is one molecule of water for every three molecules of silicate. This is an extraordinarily large fraction of water, helping to explain why these silicate liquids are so electrically conductive."

The researchers hope that better understanding of how water can trigger volcanic eruptions can improve predictions of when it is going to erupt.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bristol
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
Popcorn-rocks solve the mystery of the magma chambers
Uppsala, Sweden (SPX) Nov 07, 2016
Since the 18th century, geologists have struggled to explain how big magma chambers form in the Earth's crust. In particular, it has been difficult to explain where the surrounding rock goes when the magma intrudes. Now a team of researchers from Uppsala University and the Goethe University in Frankfurt have found the missing rocks - and they look nothing like what they expected. Researche ... read more


SHAKE AND BLOW
Weightless tourism just 4 years away

BRICS Space Agencies Sign Memorandum on Cooperation in Space Exploration

Clearing the Air in Space

Home is Where the Astronaut Is

SHAKE AND BLOW
Aerojet Rocketdyne completes CST launch abort engine hot fire tests

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

Raytheon gets $174 million Hypersonic Air-Breathing Weapon contract

SHAKE AND BLOW
Mars rover confirms 'Egg Rock' is fallen iron-nickel meteorite

Unusual Martian region leaves clues to planet's past

A record of ancient tectonic stress on Mars

Curiosity Mars Rover Checks Odd-looking Iron Meteorite

SHAKE AND BLOW
Kuaizhou-1 scheduled to launch in December

Nations ask to play part in space lab

China launches first heavy-lift rocket

China to launch Long March-5 carrier rocket in November

SHAKE AND BLOW
ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

Dream coming true for ISS-bound rookie French astronaut

SHAKE AND BLOW
Trace metal recombination centers kill LED efficiency

Controlling the properties of matter in two-dimensional crystals

Lehigh scientists fabricate a new class of crystalline solid

Establishing an advanced bonding technique for tungsten and copper alloys

SHAKE AND BLOW
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

SHAKE AND BLOW
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.