24/7 Space News  





. Mars mission Risk 29: Radiation-Induced Brain Damage

Research could lead to new treatments for conditions like Alzheimer's disease (pictured).
by Staff Writers
Washington DC (SPX) Sep 20, 2006
Among the gravest risks of a manned flight to Mars ranks the possibility that massive amounts of solar and cosmic radiation will decimate the brains of astronauts, leaving them in a vegetative state, if they survive at all.

Dubbed "Risk 29" by NASA's Mars scientists, the cosmic radiation risk remains a show-stopper because shielding a spacecraft from all radiation could make it too heavy to reach Mars, which, at its closest, is 38 million miles from earth.

Now, medical scientists have been tasked to determine the human brain's maximum safe cosmic radiation dose and to decipher precisely how radiation causes cognitive impairment, part of a quest for biological countermeasures to reduce radiation-related cognitive impairment.

The NASA-funded $14-million research project could not only help eliminate the risks to astronauts, it could unravel the biomechanics of brain damage, potentially benefiting patients with degenerative neurological conditions like Alzheimer's disease.

"This research may not only help make it safer to go to Mars, it could lead us to a deeper understanding of how the brain functions," said one of the principal investigators, Richard A. Britten, Ph.D., associate professor of radiation oncology and biophysics at Eastern Virginia Medical School (EVMS) in Norfolk, Va. "That eventually could help patients dealing with conditions that cause dementia."

The idea of a manned mission to Mars has captured the imagination for decades, and gained force after the Astronaut Neil Armstrong took his first step on the moon in 1969. But flying to Mars, even without humans aboard, is a monumentally risky engineering feat. Since 1998, the United States has completed seven Mars missions. Four failed when the Mars landers were lost on arrival.

As part of a new push to put a man on Mars, NASA has sketched out a roadmap laying out 45 risks to astronauts in a space mission that is likely to last two years. Those risks include accelerated bone loss, motion sickness, the inability to treat minor illnesses, an inadequate quantity of food and the possibility of "interpersonal tensions" between crew members.

Risk 29 addresses the fact that Mars astronauts will be bombarded by high-energy cosmic radiation - shielded on Earth by the atmosphere and the Van Allen Radiation Belts - that few medical scientists have studied.

"These are very obscure kinds of radiation that on Earth we would only see in the event of a nuclear disaster," said Britten.

To made matters more complex, one possible trajectory involves flying around Venus and using its gravitational pull to sling the spacecraft toward Mars. That means flying closer to the sun and spending months on the opposite side.

"The sun is basically a big nuclear reactor," said Britten.

The scientists hope to determine how much shielding the spacecrafts and astronauts will need, and also develop other countermeasures that to help reduce radiation-induced brain damage.

To help determine the brain's maximum acceptable dose of solar and cosmic radiation, Britten's team must replicate the type of radiation astronauts will be exposed to in deep space. They then must calculate how much damage is caused by particles with various energy levels.

"There are only a handful of laboratories in the world where these kinds of high-energy particles can be produced," Britten said. His team will be work closely with scientists at Brookhaven National Laboratory in New York.

As part of his $1.2-million segment of the study, the EVMS team will measure physical and behavioral changes in rats exposed to various levels of the type of radiation that Mars astronauts will encounter in space. They will also conduct proteomic analysis of portions of the irradiated brains to obtain more precise details about the biochemical changes.

To date, many scientists have suggested that reduced cognitive impairment results solely from the death of the brain's neurons. Britten believes other, more complex mechanisms are at work, processes that could be manipulated by NASA's medical staff.

"Once we understand what's not working, then maybe we can fix it," said Britten.

Because radiation damage is similar to the free-radical injury resulting from aging and other neurological diseases, the research could lead to better treatments for conditions like Alzheimer's disease that cause progressive dementia.

Related Links
Eastern Virginia Medical School
All about the technology of space and more
Mars News and Information at MarsDaily.com




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


hello world
Iran Daily Attacks Coverage Of 'Rich Iranian' In Space
Tehran (AFP) Sept 19, 2006
An Iranian newspaper on Tuesday attacked state television for its repeated coverage of the voyage into space of a rich Iranian-born US citizen, saying it risked creating a bad role-model for Iranian youngsters.

.
Get Our Free Newsletters Via Email
  



  • Iran Daily Attacks Coverage Of 'Rich Iranian' In Space
  • Mars mission Risk 29: Radiation-Induced Brain Damage
  • Ansari Hopes Space Travel Will Increase Respect For Earth Environment
  • Soyuz Rocket Raised Into Position For Monday Launch

  • Northrop Grumman-Built Antenna Deploys To Seek Water Under Mars
  • NASA Rover Nears Martian Bowl Goal
  • Opportunity High Tails It To Victoria Via A Rock At Emma Dean Crater
  • The Martian Sun Also Rises As Winter Retreats

  • Arianespace CEO Calls For New Pricing Regime
  • LM Announces Sale Of Its Interests In International Launch Services And LKEI
  • Call For Fair Pricing Policies In The Commercial Launch Services Industry
  • Eutelsat Confirms Sea Launch Agreements For 2008-9

  • Raytheon Completes NPOESS Segment Acceptance Testing Ahead of Schedule
  • Envisat Symposium 2007 Highlights EO Satellite Achievements
  • GeoEye Approved For Listing On The Nasdaq Global Market
  • Scientists Sketch City In Geocyberspace

  • Dwarf Planet That Caused Huge Row Gets An Appropriate Name
  • Pluto Gets A Six Digit Number
  • Myriad Planets In Our Solar System And Copernicus Smiled
  • CSEPR Examines Movement To Set Aside IAU Planet Definition Ruling

  • New Evidence Links Stellar Remains To Oldest Recorded Supernova
  • Astronomers Trace The Evolution Of The First Galaxies In The Universe
  • Scientists Detect New Kind Of Cosmic Explosion
  • The Eternal Life Of Stardust Portrayed In New NASA Image

  • New Lunar Meteorite Found In Antarctica
  • Russia And China Could Sign Moon Exploration Pact In 2006
  • SMART-1 Impact Simulated In A Laboratory Sand-Box
  • Smart-1 Impact Flash And Debris: Crash Scene Investigation

  • SSC Gets Galileo RF License Until 2037
  • Launch Of Second Galileo Test Satellite Delayed Until 2007
  • Topcon Launches All-New Robotic Surveyor Assistant
  • South Korea And EU Sign Galileo Satellite Cooperation Agreement

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement