. 24/7 Space News .
TECH SPACE
Magnetization reversal achieved at room temperature using only an electric field
by Staff Writers
Tokyo, Japan (SPX) Mar 11, 2019

Magnetization reversal at room temperature using an electric field.

Scientists at Tokyo Institute of Technology achieved magnetization reversal in cobalt-substituted bismuth ferrite by applying only an electric field. Such an effect had been sought after for over a decade in order to make new types of low-power-consumption magnetic memory devices.

In the era of information technology revolution, electronics demand rapid evolution facilitated by greater efforts from materials researchers to pave the way for further improvements and novel devices. In particular, a better understanding of the electromagnetic properties of various types of materials and new ways to harness them would allow for the fabrication of devices based on such principles.

Two years ago, a research team from the Laboratory for Materials and Structures at Tokyo Institute of Technology (Tokyo Tech), led by Prof. Masaki Azuma, demonstrated very promising properties of Cobalt-substituted Bismuth ferrite (BFCO).

This peculiar material exhibits both ferroelectric and ferromagnetic properties at room temperature; these two are coupled in a way that, the team inferred, could be exploited to exhibit reversal of the magnetization of the material by application of only an electric field at room temperature without the need of electric current.

In a more recent study, the team presented proof of this hypothesized magnetization reversal in thin films of BFCO at room temperature. While previous researchers saw some success in achieving magnetization reversal, their results were for in-plane magnetization on a multi-layer material, which carries some disadvantages.

"Direct observation of magnetization reversal on a single-phase material with ferroelectric and ferromagnetic orderings is crucial to the study of the intrinsic coupling between them. Moreover, out-of-plane magnetization reversal is desirable from the viewpoint of integration," explains Azuma.

Thus, the team fabricated thin BFCO films that exhibited spontaneous magnetization. Because BFCO is very sensitive to lattice strain, these thin films were grown on orthorhombic GdScO3, whose lattice structure matches that of BFCO maximally and bolster the growth of highly crystalline films with minimal lattice strain.

After verifying the presence of the sought-after out-of-plane magnetization, the team went on to investigate the correlation between the ferromagnetic and ferroelectric domains to see if magnetization reversal was possible by switching electric polarization.

In the resulting piezoelectric force microscopy and magnetic force microscopy images, the researchers found that their attempts were successful and that it was indeed possible to achieve out-of-plane magnetization reversal using an electric field at room temperature.

This represents the first time that such a feat was carried out, and could soon become the operating principle of a new type of memory device, as explains Azuma: "The current demonstration of magnetic reversal using an electric field paves the way to low power-consumption, non-volatile magnetic memories, such as magnetoresistive random-access memories."

These findings also bring hope to all researchers in this particular field who, although had collectively been working on magnetization reversal for 15 years, had not yet reported such promising results.

Research paper


Related Links
Tokyo Institute of Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Good news for future tech: Exotic 'topological' materials are surprisingly common
Princeton NJ (SPX) Mar 04, 2019
In a major step forward for an area of research that earned the 2016 Nobel Prize in Physics, an international team has found that substances with exotic electronic behaviors called topological materials are in fact quite common, and include everyday elements such as arsenic and gold. The team created an online catalog to make it easy to design new topological materials using elements from the periodic table. These materials have unexpected and strange properties that have shifted scientists' under ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Out of This World Auction Sponsored by ARISS

The science circling above us on the Space Station

Inspection and encapsulation of Soyuz MS-12 crew spacecraft complete

NASA's deep space exploration system is coming together

TECH SPACE
Ethanol to help fuel Russian space tourism rocket

Dragon splashdown marks success of first NASA Commercial Crew test

German engineers produce and test 3D-printed rocket engine

Illinois Native Uses Experience On Farm To Build Deep Space Rocket

TECH SPACE
SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

Simulated extravehicular activity science operations for Mars exploration

TECH SPACE
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

TECH SPACE
How ESA helps launch bright ideas and new careers

ISRO to Launch Nearly 30 Satellites in March on New PSLV Rocket

GMV controls the first satellites of OneWeb's mega-constellation

ESA approves SMILE mission with the Chinese Academy of Sciences

TECH SPACE
French armed forces tap Thales for coastal surveillance radars

Matrix could ensure vital copper supplies

Nanotechnology and sunlight clear the way for better visibility

Researchers find potential new source of rare earth elements

TECH SPACE
"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

New surprises from Jupiter and Saturn

SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

Chances for Life Expand When Binary Stars Push Together

TECH SPACE
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.