. 24/7 Space News .
ICE WORLD
Loss of diversity near melting coastal glaciers
by Staff Writers
Bremerhaven, Germany (SPX) Nov 17, 2015


Particularly tall-growing ascidians like some previously dominant sea squirt species cannot adapt to the changed conditions and die out, while their shorter relatives can readily accommodate the cloudy water and sediment cover. Image courtesy Alfred Wegener Institute / Christian Lagger (CONICET). For a larger version of this image please go here.

Melting glaciers are causing a loss of species diversity among benthos in the coastal waters off the Antarctic Peninsula, impacting an entire seafloor ecosystem. This has been verified in the course of repeated research dives, the results of which were recently published by experts from Argentina, Germany and Great Britain and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in a study in the journal Science Advances.

The scientists believe increased levels of suspended sediment in the water to be the cause of the dwindling biodiversity in the coastal region. This occurs when the effects of global warming lead glaciers near the coast to begin melting, as a result of which large quantities of sediment are carried into the seawater.

Over the past five decades, temperatures have risen nearly five times as rapidly on the western Antarctic Peninsula than the global average. Yet the impacts of the resulting retreat of glaciers on bottom-dwelling organisms (benthos) remain unclear. In response, researchers at Dallmann Laboratory are now mapping and analysing the benthos in Potter Cove, located on King George Island off the western Antarctic Peninsula.

Here the Alfred Wegener Institute and the Argentine Antarctic Institute (IAA) operate Dallmann Laboratory as part of the Argentinian Carlini Station. Research concerning benthic flora and fauna has been part of the laboratory's long-term monitoring programme for more than two decades.

In 1998, 2004 and 2010 divers photographed the species communities at three different stations and at different water depths: the first, near the glacier's edge; the second, an area less directly influenced by the glacier; and the third, in the cove's minimally affected outer edge.

They also recorded the sedimentation rates, water temperatures and other oceanographic parameters at the respective stations, so that they could correlate the biological data with these values. Their findings: some species are extremely sensitive to higher sedimentation rates.

"Particularly tall-growing ascidians like some previously dominant sea squirt species can't adapt to the changed conditions and die out, while their shorter relatives can readily accommodate the cloudy water and sediment cover," explains Dr Doris Abele, an AWI biologist and co-author of the study, adding, "The loss of important species is changing the coastal ecosystems and their highly productive food webs, and we still can't predict the long-term consequences."

"It was essential to have a basis of initial data, which we could use for comparison with the changes. In the Southern Ocean we began this work comparatively late," says the study's first author, marine ecologist Ricardo Sahade from the University of Cordoba and Argentina's National Scientific and Technical Research Council CONICET, who is leading the benthic long-term series.

"Combining this series of observations, accompanying ecological research on important Antarctic species, and mathematical modelling allows us to forecast the changes to the ecosystem in future scenarios," adds co-author Fernando Momo from Argentina's National University of General Sarmiento.

Dallmann Laboratory at Carlini Station (formerly Jubany Station) was first founded in 1994 as a joint facility by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) and the Argentine Antarctic Institute (IAA). It has since established itself as a trusted research platform for numerous international and interdisciplinary network programmes, which were supported by the European Union and Argentinian funding organisations throughout the past decade.

"Sustainable long-term research and coordinated, interdisciplinary Antarctic research programmes are essential in order to explain the local changes in coastal ecosystems in connection with global warming," says Doris Abele.

She coordinates the ongoing EU project IMCONet at Dallmann Laboratory, just as she did for previous projects like IMCOAST, in which the research underlying the current study was conducted. In addition to our Argentinian partners, researchers from the British Antarctic Survey and the University of Oldenburg also participated in the Science Advances study.

Ricardo Sahade, Cristian Lagger, Luciana Torre, Fernando Momo, Patrick Monien, Irene Schloss, David K.A. Barnes, Natalia Servetto, Soledad Tarantelli, Marcos Tatian, Nadia Zamboni, Doris Abele: Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances 2015; DOI: 10.1126/sciadv.1500050


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Growing Antarctic ice sheet caused ancient Mediterranean to dry up
Dunedin, New Zealand (SPX) Nov 17, 2015
An international research team led by a scientist at New Zealand's University of Otago has resolved the mystery of the processes involved in the Mediterranean Sea drying up around 5.6 million years ago. The event, known as the Messinian Salinity Crisis (MSC), saw the Mediterranean become a 1.5km deep basin for around 270,000 years. It also left a kilometers-deep layer of salt due to seawat ... read more


ICE WORLD
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

ICE WORLD
Curiosity Mars Rover Heads Toward Active Dunes

Upgrade Helps NASA Study Mineral Veins on Mars

Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

ICE WORLD
Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

ICE WORLD
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

ICE WORLD
Cygnus Launch Poised to Bolster Station Science, Supplies

Progress cargo spacecraft to be launched Dec 21

Space station power short circuits, system repairs needed

Cygnus Starts Final Round of Processing for Station Cargo Delivery

ICE WORLD
Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

More launches ahead for UH's Hawaii Space Flight Laboratory

LISA Pathfinder topped off for Vega launch that will test Relativity

ICE WORLD
Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

New exoplanet in our neighborhood

Asteroid ripped apart to form star's glowing ring system

ICE WORLD
Hydrogel superglue is 90 percent water

Simple errors limit scientific scrutiny

Researchers discover a new form of crystalline matter

Sea urchin spurs new ideas for lightweight materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.