Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Long-sought chiral anomaly detected in crystalline material
by Staff Writers
Princeton NJ (SPX) Sep 07, 2015


This sketch illustrates the notion of handedness, or chirality, which is found throughout nature. Most chemical structures and many elementary particles come in right- and left-handed forms. Image courtesy Princeton University. For a larger version of this image please go here.

A study by Princeton researchers presents evidence for a long-sought phenomenon - first theorized in the 1960s and predicted to be found in crystals in 1983 - called the "chiral anomaly" in a metallic compound of sodium and bismuth. The additional finding of an increase in conductivity in the material may suggest ways to improve electrical conductance and minimize energy consumption in future electronic devices.

"Our research fulfills a famous prediction in physics for which confirmation seemed unattainable," said N. Phuan Ong, Princeton's Eugene Higgins Professor of Physics, who co-led the research with Robert Cava, Princeton's Russell Wellman Moore Professor of Chemistry. "The increase in conductivity in the crystal and its dramatic appearance under the right conditions left little doubt that we had observed the long-sought chiral anomaly."

The chiral anomaly - which describes how elementary particles can switch their orientation in the presence of electric and magnetic fields - stems from the observation that right- and left-handedness (or "chirality" after the Greek word for hand) is ubiquitous in nature. For example, most chemical structures and many elementary particles come in right- and left-handed forms that are mirror images of each other.

Early research leading up to the discovery of the anomaly goes back to the 1940s, when Hermann Weyl at the Institute for Advanced Study in Princeton, New Jersey, and others, discovered that all elementary particles that have zero mass (including neutrinos, despite their having an extremely small mass) strictly segregate into left- and right-handed populations that never intermix.

A few decades later, theorists discovered that the presence of electric and magnetic fields ruins the segregation of these particles, causing the two populations to transform into each other with observable consequences.

This field-induced mixing, which became known as the chiral anomaly, was first encountered in 1969 in work by Stephen Adler of the Institute for Advanced Study, John Bell of the European Organization for Nuclear Research (CERN) and Roman Jackiw of the Massachusetts Institute of Technology, who successfully explained why certain elementary particles, called neutral pions, decay much faster - by a factor of 300 million - than their charged cousins. Over the decades the anomaly has played an important if perplexing role in the grand quest to unify the four fundamental forces of nature.

The prediction that the chiral anomaly could also be observed in crystals came in 1983 from physicists Holger Bech Nielsen of the University of Copenhagen and Masao Ninomiya of the Okayama Institute for Quantum Physics. They suggested that it may be possible to detect the anomaly in a laboratory setting, which would enable researchers to apply intense magnetic fields to test predictions under conditions that would be impossible in high-energy particle colliders.

Recent progress in the development of certain kinds of crystals known as "topological" materials has paved the way toward realizing this prediction, Ong said. In the crystal of Na3Bi, which is a topological material known as a Dirac semi-metal, electrons occupy quantum states which mimic massless particles that segregate into left- and right-handed populations.

To see if they could observe the anomaly in Na3Bi, Jun Xiong, a graduate student in physics advised by Ong, cooled a crystal of Na3Bi grown by Satya Kushwaha, a postdoctoral research associate in chemistry who works with Cava, to cryogenic temperatures in the presence of a strong magnetic field that can be rotated relative to the direction of the applied electrical current in the crystal.

When the magnetic field was aligned parallel to the current, the two chiral populations intermixed to produce a novel increase in conductivity, which the researchers call the "axial current plume." The experiment confirmed the existence of the chiral anomaly in a crystal.

"One of the key findings in the experiment is that the intermixing leads to a charge current, or axial current, that resists depletion caused by scattering from impurities," Ong said. "Understanding how to minimize the scattering of current-carrying electrons by impurities - which causes electronic devices to lose energy as heat - is important for realizing future electronic devices that are more energy-efficient. While these are early days, experiments on the long-lived axial current may help us to develop low-dissipation devices."

The study was published online in the journal Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
An engineered surface unsticks sticky water droplets
University Park PA (SPX) Sep 02, 2015
The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particul ... read more


TECH SPACE
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

TECH SPACE
ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

One year and counting: Mars isolation experiment begins

TECH SPACE
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

French woman wins disability grant for 'gadget allergy'

TECH SPACE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

TECH SPACE
First Dane in space begins long trip to repositioned ISS

ISS Crew Redocks Soyuz Spacecraft

CALET docks on the International Space Station

Astronaut Andreas to try sub-millimetre precision task on Earth from orbit

TECH SPACE
FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

GSLV Launches India's Latest Communication Satellite GSAT-6

Preparations with both passengers ongoing at Kourou

TECH SPACE
Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

TECH SPACE
Paper tubes make stiff origami structures

Long-sought chiral anomaly detected in crystalline material

Metallic gels produce tunable light emission

An engineered surface unsticks sticky water droplets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.