Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Lockheed Martin, University of Maryland to Develop Next Gen Quantum Computer
by Staff Writers
College Park MD (SPX) Mar 10, 2014


Dr. Patrick O'Shea, vice president and chief research officer at the University of Maryland, Dr. Ray O. Johnson, senior vice president and chief technology officer at Lockheed Martin and Dr. Mary Ann Rankin, senior vice president and provost at the University of Maryland signed a memorandum of understanding establishing the Quantum Engineering Center at the University of Maryland on March 5, 2014.

Lockheed Martin and the University of Maryland are partnering to develop an integrated quantum computing platform that has the potential to enhance fields ranging from drug discovery and communications to logistics.

The parties signed a memorandum of understanding today establishing the Quantum Engineering Center at the University of Maryland, College Park. "Classical computing can only take us so far," said Dr. Ray O. Johnson, Lockheed Martin senior vice president and chief technology officer.

"In the future, critical systems will become so complex that problems will take too long or become too expensive to solve using even our most powerful supercomputers. We believe the next computational revolution will stem from applied quantum science-a discipline that connects physics, information science, and engineering."

Building on more than 60 years of collaboration, Lockheed Martin and the University of Maryland signed a formal strategic framework in 2010 to jointly pursue research and development projects and business opportunities. The Quantum Engineering Center is the most recent opportunity to push the boundaries of scientific discovery and innovation.

"By building on our world-class research expertise, the University of Maryland will transform the study of quantum mechanics into the practice of quantum engineering through this unique partnership with Lockheed Martin," said Dr.

Mary Ann Rankin, senior vice president and provost of the University of Maryland, College Park. "Together, we will bring multidisciplinary methods to an area that has the potential to transform the lives of citizens around the globe."

The initial goal of the Quantum Engineering Center is to demonstrate a quantum platform that features reliable, well-characterized operation without requiring a user to have a deep understanding of the internal workings of the system-just like conventional computers work today. To achieve this will require close cooperation between scientists and engineers.

"In the case of quantum components, it's like we're back in 1947 working with the first semiconductor transistors," said Dr. Chris Monroe, Bice Zorn professor of physics at the University of Maryland.

"We are talking about unusual systems- specially tuned laser and microwave fields trained with exquisite precision onto individual atoms suspended with electrical fields and immersed in a vacuum chamber a million times less dense than outer space.

"Each aspect is challenging in its own way, but we understand exactly how every piece works. Our focus now is integrating these systems to consistently and reliably work in harmony, much like engineering a complex aircraft, so that the device is more than just a sum of its parts."

.


Related Links
Lockheed Martin
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Electronics based on a 2-D electron gas
Vienna, Austria (SPX) Mar 06, 2014
Usually, microelectronic devices are made of silicon or similar semiconductors. Recently, the electronic properties of metal oxides have become quite interesting. These materials are more complex, yet offer a broader range of possibilities to tune their properties. An important breakthrough has now been achieved at the Vienna University of Technology: a two dimensional electron gas was cre ... read more


CHIP TECH
Russia to launch three lunar rovers from 2016 to 2019

Control circuit malfunction troubles China's Yutu

China's Lunar Lander Still Operational

China Focus: Uneasy rest begins for China's troubled Yutu rover

CHIP TECH
Opportunity Mars Rover Exploring Murray Ridge Area

Mars Rover Oppportunity Crushing Rocks With Wheels

Relay Radio on Mars-Bound NASA Craft Passes Checkout

Robotic Arm Crushes Rock for Study

CHIP TECH
Bright pulses of light could make space veggies more nutritious

Under shadow of spy scandal, Merkel, Cameron head to tech fair

Committee Democrats Emphasize Need for Human Space Exploration Roadmap

NASA Commercial Crew Partners Complete Space System Milestones

CHIP TECH
China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

China capable of exploring Mars

Feature: The "masters" behind China's lunar rover Jade Rabbit

CHIP TECH
NASA says US-Russia space ties 'normal'

Cancer Targeted Treatments from Space Station Discoveries

Cosmonauts on space station to turn teacher for Russian students

Space suit leak happened before, NASA admits

CHIP TECH
Payload prep continues for Arianespace Soyuz for Sentinel-1A

Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

CHIP TECH
'Dimer molecules' aid study of exoplanet pressure, hunt for life

A small step toward discovering habitable earths

What Would A Rocky Exoplanet Look Like? Atmosphere Models Seek Clues

Super-Earth' may be dead worlds

CHIP TECH
South Africa's nano-satellite encounters space debris

Ecliptic RocketCam Captures Sirius Antenna Deployment In Geo Orbit

Ultra-fast laser spectroscopy lights way to understanding new materials

Aerojet Rocketdyne Provides Propulsion For GPM Satellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.