. 24/7 Space News .
ICE WORLD
Local drivers of amplified Arctic warming
by Staff Writers
Seoul, South Korea (SPX) Nov 26, 2018

The observations show a clear enhancement of warming In the Arctic region and across Siberia, Northern Canada and Alaska.

Long-term observations of surface temperatures show an intensified surface warming in Canada, Siberia, Alaska and in the Arctic Ocean relative to global mean temperature rise. This warming pattern, commonly referred to as Arctic amplification, is consistent with computer models, simulating the response to increasing greenhouse gas concentrations. However, the underlying physical processes for the intensified warming still remain elusive.

A new international research study on the cause of Arctic amplification published this week in the journal Nature Climate Change shows that local greenhouse gas concentrations, and Arctic climate feedbacks outweigh other processes. Using complex computer simulations, the scientists were able to disprove previously suggested hypotheses, that emphasized the role of transport of heat from the tropics to the poles as one of the key contributors to the amplified warming in the Arctic.

"Our study clearly shows that local carbon dioxide forcing and polar feedbacks are most effective in Arctic amplification compared to other processes", said corresponding author Malte Stuecker, project leader at the IBS Center for Climate Physics (ICCP) in Busan, South Korea.

Increasing anthropogenic carbon dioxide (CO2) concentrations trap heat in the atmosphere, which leads to surface warming. Regional processes can then further amplify or dampen this effect, thereby creating the typical pattern of global warming. In the Arctic region, surface warming reduces snow and sea-ice extent, which in turn decreases the reflectivity of the surface. As a result, more sunlight can reach the top of layers of the soil and ocean, leading to accelerated warming. Furthermore, changes in Arctic clouds and of the vertical atmospheric temperature profile can enhance warming in the polar regions.

In addition to these factors, heat can be transported into the Arctic by winds. "We see this process for instance during El Nino events. Tropical warming, caused either by El Nino or anthropogenic greenhouse emissions, can cause global shifts in atmospheric weather patterns, which may lead to changes in surface temperatures in remote regions, such as the Arctic", said Kyle Armour, co-author of the study and professor of Atmospheric Sciences and Oceanography at the University of Washington.

Moreover, global warming outside the Arctic region will also lead to an increase in Atlantic Ocean temperatures. Ocean currents, such as the Gulf Stream and the North Atlantic drift can then transport the warmer waters to the Arctic ocean, where they could melt sea ice and experience further amplification due to local processes.

To determine whether tropical warming, atmospheric wind and ocean current changes contribute to future Arctic Amplification, the team designed a series of computer model simulations. "By comparing simulations with only Arctic CO2 changes with simulations that apply CO2 globally, we find similar Arctic warming patterns. These findings demonstrate that remote physical processes from outside the polar regions do not play a major role, in contrast to previous suggestions", says co-author Cecilia Bitz, professor of Atmospheric Sciences at the University of Washington.

In the tropics - fueled by high temperature and moisture - air can easily move up to high altitudes, meaning the atmosphere is unstable. In contrast, the Arctic atmosphere is much more stable with respect to vertical air movement. This condition enhances the CO2-induced warming in the Arctic near the surface. In the tropics - due to the unstable atmosphere - CO2 mostly warms the upper atmosphere and energy is easily lost to space. This is opposite to what happens in the Arctic: Less outgoing infrared radiation escapes the atmosphere, which further amplifies the surface-trapped warming.

"Our computer simulations show that these changes in the vertical atmospheric temperature profile in the Arctic region outweigh other regional feedback factors, such as the often-cited ice-albedo feedback" says Malte Stuecker.

The new findings of this study highlight the importance of Arctic processes in controlling the pace at which sea-ice will retreat in the Arctic Ocean. The results are also important to understand how sensitive polar ecosystems, Arctic permafrost and the Greenland ice-sheet will respond to Global Warming.

Research paper


Related Links
Institute for Basic Science
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Natural climate variability explains almost half of Arctic sea ice loss
Washington DC (UPI) Nov 06, 2018
Manmade climate change alone doesn't explain the dramatic loss of sea ice in the Arctic. According to new analysis by scientists at Lawrence Livermore National Laboratory, natural climate variability has accelerated Arctic sea ice loss over the last several decades. Researchers used a variety of climate models and an analytical method known as "fingerprinting" to determine which factors best explain changes in Arctic sea ice. The new analysis - detailed this week in the journal Nature G ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
UK Space Agency funds new experiments onboard the International Space Station

Your own private space vacation

Crew assistant CIMON successfully completes first tasks in space

Space-inspired speed breeding for crop improvement

ICE WORLD
MIURA-1 will be launched from INTA's El Arenosillo Experimentation Center in 2019

Probing the Plume

SpaceX's Elon Musk renames his big rocket "Starship"

Rocket Lab announces $140 Million in new funding

ICE WORLD
Mars Moon Got Its Grooves from Rolling Stones

NASA picks ancient Martian river delta for 2020 rover touchdown

HP3 mole onboard NASA's InSight mission soon to land on Mars

What two planetary siblings can teach us about life

ICE WORLD
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

ICE WORLD
Airbus to build new generation broadcast satellites to renew Eutelsat HOTBIRD fleet

Goonhilly partners with Airbus, other industry leaders and academics in proposed SmartSat CRC to drive Australia's space sector

SpaceX gets nod to put 12,000 satellites in orbit

Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

ICE WORLD
Laser communications technology from Tesat setting new records

Combination 3D Printer will recycle plastic in space

Treated superalloys demonstrate unprecedented heat resistance

New space industry emerges: on-orbit servicing

ICE WORLD
Researchers Are Perfecting Technology to Look for Signs of Alien Life

Study reveals one of universe's secret ingredients for life

What magnetic fields can tell us about life on other planets

Jumping genes shed light on how advanced life may have emerged

ICE WORLD
Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.