Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Lobster-Eye imager detects soft X-ray emissions
by Staff Writers
Washington DC (SPX) Jul 30, 2015


This is the integrated instrument prototype with the optics assembly at the front and the electronics box in the back. Image courtesy NASA. For a larger version of this image please go here.

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration (NASA) set out to create a wide-field-of-view soft X-ray imager capable of detecting the soft X-ray emissions produced whenever the solar wind encounters neutral gas.

This week in the journal Review of Scientific Instruments, from AIP Publishing, the group describes developing and launching their imager, which centers on "Lobster-Eye optics," as well as its capabilities and future applications in space exploration.

The group's imager was inspired by simulations created about a decade ago by Tom Cravens and Ina Robertson at the University of Kansas, both of whom are now involved in this work, which demonstrated that the interaction between the solar wind and the residual atmosphere in Earth's magnetosphere could be imaged in soft X-rays.

By way of background, on the sun, wind plasma flows continuously from all latitudes and longitudes - occupying the entire heliosphere and interacting with a neutral gas. This "solar wind" consists primarily of protons, but also contains a flux of high-charge-state heavy ions. When these ions interact with the gas, many undergo charge-exchange reactions and acquire an electron in an excited state, which causes the high-charge-state ions to emit soft X-ray photons.

It's precisely these sorts of soft X-ray emissions that the group's imager is designed to detect.

What are "Lobster-Eye Optics
Lobster-Eye optics refers to an optical element used to focus soft X-rays, developed by the University of Leicester in the U.K. and Photonis Corp. in France and inspired by the eyes of the eponymous epicurean crustacean.

The optical element "consists of an array of very small square glass pores 20 microns on a side curved like a section of a sphere, with a radius of 75 centimeters," explained Michael R. Collier, an astrophysicist working for NASA's Goddard Space Flight Center and lead author of the paper. "Our imager operates on the same principle as the lobster eye, which is how it got its name, by focusing soft X-ray photons onto a plane located at half the radius of the sphere."

What's the significance of a wide-field-of view imager in space? "It takes us one step closer toward global solar wind and magnetosphere imaging capabilities," Collier said. "And it also represents taking a theory, in this case all of the calculations and simulations of physical phenomena, and successfully applying it to a useful scientific capability."

To this end, globally imaging the solar wind's interaction with the Earth's magnetosphere will enable tracking the flow of energy and momentum into the atmosphere. "Because all of the energy that powers dangerous space weather events near Earth comes from solar wind, this capability allows us to better protect our space assets - particularly geosynchronous spacecraft, such as those that carry cell phone signals," he added.

In terms of applications, the European Space Agency and Chinese Academy of Sciences are already making plans for a mission called the "Solar Wind Magnetosphere Ionosphere Link Explorer," a.k.a. SMILE, that will include a wide-field-of-view soft X-ray imager featuring Lobster-Eye optics. "The goal of this mission is to perform global imaging of the solar wind and magnetosphere interaction - something that has yet to be achieved," said Collier.

What's next for the group? "These soft X-rays are observed anywhere in the solar system that the solar wind encounters neutral gas--including the Earth, Moon, Mars, Venus, and comets," Collier noted. "So, in the future, we'll explore the applicability of our technique within the context of missions to other planets."

The group's technique is also easily adapted to nanosatellites such as CubeSats - which boast a form factor ranging from 1 to 10 kilograms and are described in canonical units of 10 x 10 x 10 cm - and will "enable low-cost missions with a high science return," said Collier.

The article, "First Flight in Space of a Wide-Field-of-View Soft X-ray Imager Using Lobster-Eye Optics: Instrument Description and Initial Flight Results" is authored by Michael R. Collier, F. Scott Porter, David G. Sibeck, Jenny A. Carter, Meng P. Chiao, Dennis J. Chornay, Thomas E. Cravens, Massimilianao Galeazzi, John W. Keller, Dimitra Koutroumpa, Joseph Kujawski, Kip Kuntz, Andy M. Read, Ina P. Robertson, Steve Sembay, Steven L. Snowden, Nicholas Thomas, Youaraj Uprety, and Brian M. Walsh. It will appear in the journal Review of Scientific Instruments on July 28, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Satellite time transfer method based on two-way common-view comparison
Beijing, China (SPX) Jul 27, 2015
Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View (TWCV) satellite time transfer for Compass system is proposed in recent study. The title of the paper related to the study is "The method and experiment analysis of two-way common-view satellite time transfer for compass sy ... read more


TECH SPACE
NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

TECH SPACE
New Website Gathering Public Input on NASA Mars Images

Antarctic Offers Insights Into Life on Mars

Earth and Mars Could Share A Life History

Curiosity Rover Inspects Unusual Bedrock

TECH SPACE
Domes Arrive for CST-100 Test Article Assembly

Massive pool for space and deep-sea training to be built in Essex

Planetary Resources' First Spacecraft Successfully Deployed

Space crew praises US-Russian 'handshake in space' 40 years on

TECH SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

TECH SPACE
RED epic dragon camera captures riveting images on space station

Launch, docking returns ISS crew to full strength

Russia Launches New Crew to International Space Station

Russia Extends Life of International Space Station Until 2024

TECH SPACE
SMC goes "2-for-2" on weather delayed launch

Ariane 5 arrives for Sept dual-payload mission

Arianespace inaugurates new fueling facility for Soyuz upper stage

India Earned Over $100Mln Launching Foreign Satellites

TECH SPACE
Discovery Of A Mars-Size World Uses Tug-Of-War Technique

Kepler Mission Discovers Bigger, Older Cousin to Earth

Pulsar Punches Hole In Stellar Disk

Finding Another Earth

TECH SPACE
Rock paper fungus

Radiation protection vest being investigated for use in space

Syntactic foam sandwich fills hunger for lightweight yet strong materials

Cold crystallization has a dual nature




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.