Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TIME AND SPACE
Light source discovery 'challenges basic assumption' of physics
by Staff Writers
Strathclyde, UK (SPX) Jan 18, 2017


Modern light sources, or, more generally, electromagnetic sources used as scientific tools require good coherency, monochromaticity, and high emission power.

A widely-held understanding of electromagnetic radiation has been challenged in newly published research led at the University of Strathclyde. The study found that the normal direct correspondence between the bandwidths of the current source and emitted radiation can be broken. This was achieved by extracting narrowband radiation with high efficiency, without making the oscillation of the current narrowband.

The finding produced narrowband light sources in media where electromagnetic radiation would not normally be possible. It makes for a powerful tool for scientists that enables them to understand the intricacies of how materials, or even biological molecules, behave under different conditions, which has a major impact on people's lives through the development of new products and medical treatments.

The research, published in Scientific Reports, also involved researchers at the Ulsan National Institute of Science and Technology (UNIST) and the Gwangju Institute of Science and Technology (GIST), both in South Korea.

Professor Dino Jaroszynski, of Strathclyde's Department of Physics, led the study. He said: "Coherent light sources such as lasers have many uses, from communication to probing the structure of matter. The simplest source of coherent electromagnetic radiation is an oscillating electric current in an antenna. However, there are many other devices are based on these basic laws of physics, such as the free-electron laser, which produces coherent X-ray radiation, or magnetrons found in microwave ovens.

"Our study has shown that some common media with interesting optical properties can be taken advantage of if we imbed, or bury, an oscillating current source in them. Media such as plasma, semiconductors and photonic structures have a 'cut-off', where propagation of electromagnetic radiation with frequencies lower than the 'cut-off' frequency is not possible; we noticed that the radiation impedance is increased at the cut-off.

"One consequence of this is that, for a broadband current source immersed in this type of dispersive medium, the cut-off frequency 'mode' is selectively enhanced due to Ohm's law, resulting in narrow bandwidth emission. What is curious is that novel physics should still be hidden in the classical cut-off behaviour; in our research, we uncovered a hidden face of the cut-off and realised a new paradigm of narrowband light sources in media that would not usually allow electromagnetic radiation to propagate. This is a remarkably simple idea based on straightforward physics theory that seems to have been overlooked.

"This is a very exciting theoretical discovery that comes out of a very fruitful cross-continental collaboration. It shows that we should always keep an open mind and question even very basic assumptions. We hope to demonstrate this phenomenon at the Strathclyde-based Scottish Centre for the Application of Plasma-based Accelerators; there are numerous applications of electromagnetic radiation and the proposed source should have a large impact if we are able to demonstrate it experimentally."

Professor Min Sup Hur at UNIST, Republic of South Korea, who leads the work from UNIST, said: "This new discovery is scientifically interesting, because it leads us to see the phenomenon of electromagnetic radiation from a completely different viewpoint. We hope the fruitful international collaboration, which brought us to this theoretical discovery, will continue with the experimental demonstration of the idea."

Modern light sources, or, more generally, electromagnetic sources used as scientific tools require good coherency, monochromaticity, and high emission power. Coherency and narrow bandwidth - or monochromaticity - are important properties of electromagnetic radiation that allow it to be used to observe changes in the structure of materials subject to stimuli, such as a short intense laser pulse; material properties are deduced from changes that are made apparent in pump-probe studies. An analogy would be to making a movie by assembling many time lapse snapshots to animate the changes that are occurring in the material after it has been stimulated.

The main challenge is making high power sources of electromagnetic radiation monochromatic. This is often done by making the oscillating current narrowband or filtering the spectrum, which is extremely inefficient. It is complicated, and can be expensive, to reduce the bandwidth of a current source while maintaining or increasing its radiated power.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Strathclyde
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Investigations of the skyrmion Hall effect reveal surprising results
Mainz, Germany (SPX) Jan 03, 2017
Researchers at Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) have made another important breakthrough in the field of future magnetic storage devices. Already in March 2016, the international team investigated structures, which could serve as magnetic shift register or racetrack memory devices. This type of storage promises low access times, ... read more


TIME AND SPACE
Russian Astronauts to Hold Terminator Experiment in Space

Emerging tech aims to improve life for handicapped

Two US astronauts complete spacewalk to upgrade ISS

The hidden artist of the Soviet space programme

TIME AND SPACE
SpaceX launches, lands rocket for first time since Sept blast

Japan delays launch of mini-rocket amid bad weather

Michoud complete stand for testing SLS main fuel tank

China's carrier rocket puts 3 satellites in space in first commercial mission

TIME AND SPACE
New Year yields interesting bright soil for Opportunity rover

Hues in a Crater Slope

3-D images reveal features of Martian polar ice caps

Odyssey recovering from precautionary pause in activity

TIME AND SPACE
China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

TIME AND SPACE
OneWeb announces key funding from SoftBank Group and other investors

Airbus DS and Energia eye new medium-class satellite platform

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

TIME AND SPACE
2-D materials enhance a 3-D world

How to inflate a hardened concrete shell with a weight of 80 tons

Researchers reveal world's most precise metronome

Theory lends transparency to how glass breaks

TIME AND SPACE
Could dark streaks in Venusian clouds be microbial life

VLT to Search for Planets in Alpha Centauri System

Hubble detects 'exocomets' taking the plunge into a young star

Between a rock and a hard place: can garnet planets be habitable

TIME AND SPACE
Lowell Observatory to renovate Pluto discovery telescope

Flying observatory makes observations of Jupiter previously only possible from space

How a moon slows the decay of Pluto's atmosphere

York U research identifies icy ridges on Pluto




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement