Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Lehigh scientists extend the reach of single crystals
by Staff Writers
Bethlehem PA (SPX) Mar 25, 2016


A scanning electron micrograph (a) and an image quality map (b) of that micrograph demonstrate the ability to fabricate patterned single-crystal architecture on a glass surface. In the lower image (b), the green color represents a single crystal embedded in the blue glass background. The width of lines in the two figures is about five micrometers. Image courtesy Dmytro Savytskii, Brian Knorr, Volkmar Dierolf and Himanshu Jain. For a larger version of this image please go here.

Materials scientists and physicists at Lehigh University have demonstrated a new method of making single crystals that could enable a wider range of materials to be used in microelectronics, solar energy devices and other high-technology applications.

The researchers reported their discovery Friday, March 18, in Scientific Reports, a Nature journal, in an article titled "Demonstration of single crystal growth via solid-solid transformation of a glass."

The breakthrough, said the researchers, opens the way for glasses and other solid materials with disordered atomic structures to be made in single-crystal form as is silicon, the world's leading semiconductor material.

In single-crystal form, the solids would possess the superior properties required in high-tech applications. These applications, the researchers said, include lasers and light-emitting diodes (LEDS), in which epitaxial-growth layering of extremely thin single-crystal films on a substrate is used to make semiconductor devices.

Single crystals of silicon are grown through melting, said Himanshu Jain, one of the paper's four authors. But melting causes many other highly useful materials to decompose or change decomposition and lose their utility.

"The boundaries between the tiny crystals in polycrystalline materials are weak or bad links and give the materials undesirable properties," said Jain, the T.L. Diamond Distinguished Chair in Engineering and Applied Science and professor of materials science and engineering at Lehigh.

"A single crystal, having no boundaries, has superior properties. It is stronger mechanically in corrosive environments, it is electronically superior and it transmits light well."

Jain's group used a novel heating strategy to convert glass into a single crystal without having it first pass through a gaseous or liquid phase and without the creation of unwanted crystals, or nuclei.

"In this first unambiguous demonstration of an all-solid-state glass [to] crystal transformation, extraneous nucleation is avoided...via spatially localized laser heating and inclusion of a suitable glass former in the composition," the group wrote in Scientific Reports.

The lead author of the Scientific Reports article, Dmytro Savytskii, is a research scientist in the department of materials science and engineering at Lehigh. The other authors are Brian Knorr, an assistant professor of physics at Fairleigh Dickinson University who received his Ph.D. in physics from Lehigh in 2014; and Volkmar Dierolf, distinguished professor and chair of Lehigh's physics department.

In a single crystal, said Jain, all the atoms of a material are arranged in a perfectly ordered 3D lattice structure. To make a large single crystal of silicon, scientists take a tiny seed of single-crystal silicon and pull it up from melted silicon. The atoms from the melted silicon deposit on the seed in a lattice structure. Depending on the speed at which the crystal is pulled, a small or large single crystal of silicon emerges as the melt cools.

Jain's group developed a contrasting method to make a single crystal of an antimony-sulfide (Sb2S3) chalcogenide glass. To induce the formation of a crystal inside the glass, the group uses a laser to heat the glass from the ambient temperature to a crystallization temperature well below its melting point. Electron-diffraction and microscopy color mapping then enables the researchers to detect the orientation of atomic configurations and to prove single crystallinity at different places on the sample.

The formation of the crystal, Jain notes, occurs as the solid glass is heating up and not, as is the case with silicon, when its melt is cooling. This is readily observed in scratches that run across the glass through the single crystal formed by the laser. Any melting of the glass would smoothen and eliminate the scratches.

"Once we make the single-crystal line," said Jain, "we backtrack to get additional parallel single-crystal lines and eventually a single-crystal-layer surface on top of the glass. We can stitch these lines to convert the entire glass surface into a single crystal."

The group's goal, said Jain, is to apply enough heat so that the disorganized atoms in the glass organize into just one single crystal without triggering the nucleation of unwanted crystals.

"We want just one nucleus to form. If we get multiple nuclei, we end up with a polycrystalline ceramic material with undesired properties."

To prevent extraneous nucleation, the group uses a focused laser to limit the volume of glass that is heated and allow only one nucleus to form. That nucleus is quickly grown into a single crystal.

"We show that unwanted additional nucleation can be avoided by decreasing the volume of the heated region and growing the crystal by moving the laser beam at a sufficiently fast rate such that there is no time for forming extraneous crystals," the group wrote in Scientific Reports.

The group also came up with a second strategy that relies on a glass of a predesigned composition of antimony, sulfur and iodine (Sb-S-I). As the single crystal begins to form and grow, iodine moves out of the crystal into the neighboring glass, where it acts to suppress nucleation.

Research paper: Demonstration of single crystal growth via solid-solid transformation of a glass

.


Related Links
Lehigh University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
How electrons travel through exotic new material
Princeton NJ (SPX) Mar 22, 2016
Researchers at Princeton University have observed a bizarre behavior in a strange new crystal that could hold the key for future electronic technologies. Unlike most materials in which electrons travel on the surface, in these new materials the electrons sink into the depths of the crystal through special conductive channels. "It is like these electrons go down a rabbit hole and show up on ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

TECH SPACE
China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

TECH SPACE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

TECH SPACE
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

TECH SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TECH SPACE
VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

TECH SPACE
Uncovering bacterial role in platinum formation

'Invulnerable' coatings for cutting tools from gas

Detecting radioactive material from a remote distance

New way to control particle motions on 2-D materials




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.