. 24/7 Space News .
ENERGY TECH
Launching fusion reactions without a central magnet, or solenoid
by Staff Writers
Washington DC (SPX) Oct 28, 2016


Left: Plasmoid formation in simulation of NSTX plasma during startup without solenoid. Right: Fast-camera image of NSTX plasma shows two discrete plasmoid-like structures. Image courtesy NSTX. For a larger version of this image please go here.

The tokamak is an experimental chamber that holds a gas of energetic charged particles, plasma, for developing energy production from nuclear fusion. Most large tokamaks create the plasma with solenoids - large magnetic coils that wind down the center of the vessels and inject the current that starts the plasma and completes the magnetic field that holds the superhot gas in place. But future tokamaks must do without solenoids, which run in short pulses rather than for weeks or months at a time as commercial fusion power plants will have to do.

Recent computer simulations have suggested a novel method for launching the plasma without using solenoids. The simulation modeling shows the formation of distinct, current carrying magnetic structures called plasmoids that can initiate the plasma and complete the complex magnetic field.

Everything starts with magnetic field lines, or loops, that rise through an opening in the floor of the tokamak. As the field lines are electrically forced to expand into the vessel, a thin layer, or sheet, of electrical current can form. Through a process called magnetic reconnection, the sheet can break and form a series of ring-shaped plasmoids that are the magnetic equivalent to the bubble rings created by dolphins.

The computationally predicted plasmoids have been confirmed with fast-camera images (Figure 1) inside the National Spherical Torus Experiment (NSTX), the major fusion facility at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL); the facility has since been upgraded. The plasmoids merge to form a large ring carrying up to 400,000 amperes of current, creating a plasma start-up phase inside the tokamak.

This advanced modeling of plasmoids also led to another major finding: the conditions under which a large volume of field line closure and maximum start-up current can be achieved by the upgrade of the National Spherical Torus Experiment (NSTX-U).

Plasmoid-like structures are also observed in nature such as during eruptive solar events. The global plasmoid formation observed in the tokamak sheds new light on the magnetic reconnection process and the trigger mechanism of solar flares. These findings also reveal that the same plasmoid-mediated reconnection that occurs in space has a leading role to play in closing magnetic field lines and starting up plasma in NSTX-U.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Scientists move step closer to solving fusion plasma dilemma
Ulsan, South Korea (SPX) Sep 15, 2016
A team of researchers, affiliated with UNIST claims to have made yet another step towards finding a solution to one of the critical but unsolved fusion plasma physics problems, which is to mitigate or suppress the potentially harmful plasma edge instabilities, so-called the Edge Localised Modes (ELMs). The energy bursts caused by ELMs would be a detrimental event, as it can potentially dam ... read more


ENERGY TECH
Urine may be the X factor to exploring deep space

The Space Cadets of 2016

NASA Shakes Up Orion Test Article for the Journey to Mars

Beaches, skiing and tai chi: Club Med, Chinese style

ENERGY TECH
Boosting Europe's all-electric satellites

Guiding Supply Ship to the International Space Station

The Pressure is On for SLS Hardware in Upcoming Test

First launch for Orbital's Antares rocket since '14 blast

ENERGY TECH
Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

MAVEN mission observes ups and downs of water escape from Mars

A graveyard of broken dreams and landers

ENERGY TECH
China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

ENERGY TECH
Airbus DS contracts with Intelsat General for European Defence Communications

Final exams prepare Thomas Pesquet for launch

Airbus DS in partnership with Orbital ATK to build EUTELSAT 5 West B

Third party satellite launch order bookings for Isro stands at $42 million

ENERGY TECH
Using Photonics to Call Home

Researchers use temperature to control droplet movement

Self-assembly of photoresponsive polymer brushes to realize advanced surfaces

Liquid-repellant tape adheres to any surface

ENERGY TECH
Tatooine worlds orbiting 2 suns often survive violent escapades of aging stars

Oldest known planet-forming disk found

ALMA spots possible formation site of icy giant planet

Astronomers find oldest known planetary disk

ENERGY TECH
Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

Curious tilt of the Sun traced to undiscovered planet

Shedding light on Pluto's glaciers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.