. 24/7 Space News .
CARBON WORLDS
Laser-induced graphene kills bacteria, resists biofouling
by Staff Writers
Houston TX (SPX) May 26, 2017


In the top row, the growth of biofilm on surfaces with a solution containing Pseudomonas aeruginosa is observed on, from left, polyimide, graphite and laser-induced graphene surfaces. Green, red and blue represent live bacteria, dead bacteria and extracellular polymeric substances, respectively. At bottom, a sheet of polyimide burned on the left to leave laser-induced graphene shows the graphene surface nearly free of growth. Credit Arnusch Lab/Ben-Gurion University of the Negev

Scientists at Rice University and Ben-Gurion University of the Negev (BGU) have discovered that laser-induced graphene (LIG) is a highly effective anti-fouling material and, when electrified, bacteria zapper.

LIG is a spongy version of graphene, the single-atom layer of carbon atoms. The Rice lab of chemist James Tour developed it three years ago by burning partway through an inexpensive polyimide sheet with a laser, which turned the surface into a lattice of interconnected graphene sheets. The researchers have since suggested uses for the material in wearable electronics and fuel cells and for superhydrophobic or superhydrophilic surfaces.

According to their report in the American Chemical Society's ACS Applied Materials and Interfaces, LIG also protects surfaces from biofouling, the buildup of microorganisms, plants or other biological material on wet surfaces.

"This form of graphene is extremely resistant to biofilm formation, which has promise for places like water-treatment plants, oil-drilling operations, hospitals and ocean applications like underwater pipes that are sensitive to fouling," Tour said. "The antibacterial qualities when electricity is applied is a great additional benefit."

When used as electrodes with a small applied voltage, LIG becomes the bacterial equivalent of a backyard bug zapper. Tests without the charge confirmed what has long been known - that graphene-based nanoparticles have antibacterial properties. When 1.1 to 2.5 volts were applied, the highly conductive LIG electrodes "greatly enhanced" those properties.

Under the microscope, the researchers watched as fluorescently tagged Pseudomonas aeruginosa bacteria in a solution with LIG electrodes above 1.1 volts were drawn toward the anode. Above 1.5 volts, the cells began to disappear and vanished completely within 30 seconds. At 2.5 volts, bacteria disappeared almost completely from the surface after one second.

The Rice lab partnered with Professor Christopher Arnusch, a lecturer at the BGU Zuckerberg Institute for Water Research who specializes in water purification. Arnusch's lab tested LIG electrodes in a bacteria-laden solution with 10 percent secondary treated wastewater and found that after nine hours at 2.5 volts, 99.9 percent of the bacteria were killed and the electrodes strongly resisted biofilm formation.

The researchers suspect bacteria may meet their demise through a combination of contact with the rough surface of LIG, the electrical charge and toxicity from localized production of hydrogen peroxide. The contact may be something like a knee hitting pavement, but in this case, the bacteria are all knee and the sharp graphene edges quickly destroy their membranes.

Fortunately, LIG's anti-fouling properties keep dead bacteria from accumulating on the surface, Tour said.

"The combination of passive biofouling inhibition and active voltage-induced microbial removal will likely make this a highly sought-after material for inhibiting the growth of troublesome natural fouling that plagues many industries," Tour said. Research paper

CARBON WORLDS
Energy decay in graphene resonators
Madrid, Spain (SPX) May 18, 2017
Energy dissipation is a key ingredient in understanding many physical phenomena in thermodynamics, photonics, chemical reactions, nuclear fission, photon emissions, or even electronic circuits, among others. In a vibrating system, the energy dissipation is quantified by the quality factor. If the quality factor of the resonator is high, the mechanical energy will dissipate at a very low ra ... read more

Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

CARBON WORLDS
Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

Neptune: Neutralizer-free plasma propulsion

Spaceflight buys Electron Rocket from Rocket Lab

CARBON WORLDS
Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

CARBON WORLDS
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

CARBON WORLDS
AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

CARBON WORLDS
Neutron lifetime measurements take new shape for in situ detection

One-dimensional crystals for low-temperature thermoelectric cooling

New theory predicts wetted area of droplets colliding with flat surface

Breaking glass in infinite dimensions

CARBON WORLDS
Water forms superstructure around DNA, new study shows

How RNA formed at the origins of life

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Scientists propose synestia, a new type of planetary object

CARBON WORLDS
Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

First Juno Science Results Supported by University's Jupiter 'Forecast'

New Horizons Deploys Global Team for Rare Look at Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.