. 24/7 Space News .
STELLAR CHEMISTRY
Large millimeter telescope observes powerful molecular wind in an active spiral galaxy
by Staff Writers
Amherst MA (SPX) Oct 30, 2018

Artist composite of the LMT while observing the galaxy IRAS17020+4544.

An international team of astrophysicists using the Large Millimeter Telescope (LMT) in central Mexico has detected an unexpected and powerful outflow of molecular gas in a distant active galaxy similar to the Milky Way. The galaxy is 800 million light years from Earth. The findings are published in the current edition of Astrophysical Journal Letters.

The research team includes Min S. Yun, a professor of astronomy at the University of Massachusetts Amherst, and colleagues from Mexico's Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), the National Autonomous University of Mexico (UNAM) and institutions in Italy, Belgium, Finland, the Netherlands, Germany and Spain.

Yun says that the LMT, which is operated jointly by UMass Amherst and INAOE, is uniquely suited for detecting a faint, broad line like this observational result and is designed specifically for this type of experiment.

"Understanding how frequently the central supermassive black hole disrupts its host galaxy through a yet unknown energetic feedback process is one of the most important unanswered questions in the study of galaxy evolution today, and the LMT with its full 50-meter surface that was just completed, should yield more insights in the coming observing seasons," he says

Anna Lia Longinotti of the INAOE, who led the research, says "The novelty of this result is that we are seeing feedback in a galaxy where this phenomenon is not expected. The other two galaxies where it was observed are more dust- and gas-rich, whereas this galaxy is a spiral type, therefore more similar to the Milky Way. This discovery opens the path to explore the possibility that active galactic nuclei (AGN) feedback can be produced also by less luminous objects with different characteristics."

About two years ago, thanks to X-ray data obtained by the European Space Agency satellite XMM-Newton, the presence of ultra-fast outflows of ionized, hot gas at sub-relativistic velocity was reported in this same object, called IRAS17020+4544. These winds are thought to originate in the accretion disk located around the supermassive black hole that powers luminous active galactic nuclei (quasars).

The activity of this type of galaxy is related to the energy released by accretion processes that take place close to the black hole. Despite hosting an active nucleus, this galaxy is considerably less luminous when compared to quasars.

The data obtained with the LMT spectrograph Redshift Search Receiver (RSR), developed at UMass Amherst, reveal that such X-ray ultra-fast outflows co-exist with molecular outflow of cold and dense gas that emits in millimeter frequencies, according to a paper recently published in the journal Astrophysical Journal Letters.

Longinotti explains that the gas detected by the LMT is located within the same host galaxy at a large distance, 2,000 to 20,000 light years from the central black hole, whereas the X-ray fast wind is located much closer to the black hole in the heart of the active nucleus.

She highlighted that among the scientific merits in pursuing observations of AGN molecular gas, one is to corroborate the existence of a connection of accretion disk fast winds and large-scale outflows of molecular gas. "In this galaxy we already had evidence of a wind capable of producing feedback to the host galaxy.

Feedback processes may be the result of large ejection of mass and energy that has the effect of sweeping the galaxy and stripping the gas with which stars are formed. The gas entrained by the outflow travels outward and the galaxy is left without 'prime food' to form new stars. Eventually, the effect of the feedback is that the galaxy turns inefficient in forming stars and it becomes a passive galaxy," she says.

The accretion disk wind observed in X-ray light is launched with a certain amount of energy and force. "Our measurements seem to indicate that the molecular outflow conserves this initial energy while sweeping the galaxy, therefore we do see this connection, and it seems to indicate that the behavior of the black hole, which is responsible for launching the disk wind, has a profound effect on the gas distributed at a much larger scale within the host galaxy. In conclusion, this connection regulates star formation activity and galaxy evolution.

Longinotti says this phenomenon was not expected in objects that are not quasars nor Ultra Luminous Infrared Galaxies, both characterized by having a large amount of molecular gas.

"We knew that LMT technical features routinely allow observation of molecular gas in galaxies but in this particular one we could determine the presence of the molecular outflow, and measure its velocity. Although not as high as those found for the X-ray wind, the molecular outflow velocity ranges between 700 and 1000 km/s, therefore well in excess to the cold gas typically observed in co-rotation in several galaxies."

INAOE's Olga Vega who also participated in the project, highlighted that the LMT is currently the best single-dish telescope to carry out this type of research. She says, to date, the connection of these winds was detected only in three objects, and the other two are 10 times more luminous than this one. Vega says now that the LMT is operating with 50 meters of diameter and new instrumentation is being installed, it is an ideal observatory to search and detect these outflows in other galaxies.

"If the aim is to perform a deeper study, it is necessary to go to interferometry as this technique allows dimensions, spatial distribution and geometry of the molecular outflows to be revealed. Nonetheless, the LMT will have a fundamental role to discover new molecular outflows and thus, to unveil the nature of cosmic feedback and its role in galaxy evolution."

Longinotti says this particular galaxy will be the subject of further multi-wavelength studies making it the first time that such a wide and complete campaign is carried out to advance understanding of the outflow phenomenon.


Related Links
University of Massachusetts Amherst
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Super-slow pulsar challenges theory
Amsterdam, Netherlands (SPX) Oct 24, 2018
An international team of astronomers have discovered the slowest-spinning radio pulsar yet known. The neutron star spins around only once every 23.5 seconds and is a challenge for theory to explain. The researchers, including astronomers at the University of Manchester, ASTRON and the University of Amsterdam, carried out their observations with the LOFAR telescope, whose core is located in the Netherlands. Their findings appear in the Astrophysical Journal. Pulsars are rapidly rotating neutr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

STELLAR CHEMISTRY
Viasat, SpaceX Enter Contract for a Future ViaSat-3 Satellite Launch

Astronauts confident of next crewed Soyuz mission to Space Station

Russia launches first Soyuz rocket since failed space launch

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

STELLAR CHEMISTRY
Mars Express keeps an eye on curious cloud

Minerals of the world, unite

NASA's InSight will study Mars while standing still

NASA Mars team actively listening out for Opportunity

STELLAR CHEMISTRY
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

STELLAR CHEMISTRY
ESA on the way to Space19+ and beyond

Ministers endorse vision for the future of Europe in space

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

Space industry entropy

STELLAR CHEMISTRY
The surprising coincidence between two overarchieving NASA missions

Air Force contract Ball Aerospace for laser research

Memory-steel makes for new material to strengthen buildings

New composite material that can cool itself down under extreme temperatures

STELLAR CHEMISTRY
Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Algorithm takes search for habitable planets to the next level

Superflares From Young Red Dwarf Stars Imperil Planets

STELLAR CHEMISTRY
Europa plume sites lack expected heat signatures

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.