. 24/7 Space News .
EXO WORLDS
Kepler Telescope Spies Details of Trappist-1's Outermost Planet
by Staff Writers
Seattle WA (SPX) May 22, 2017


illustration only

A University of Washington-led international team of astronomers has used data gathered by the Kepler Space Telescope to observe and confirm details of the outermost of seven exoplanets orbiting the star TRAPPIST-1.

They confirmed that the planet, TRAPPIST-1h, orbits its star every 18.77 days, is linked in its orbital path to its siblings and is frigidly cold. Far from its host star, the planet is likely uninhabitable - but it may not always have been so.

UW doctoral student Rodrigo Luger is lead author on a paper published May 22 in the journal Nature Astronomy.

"TRAPPIST-1h was exactly where our team predicted it to be," Luger said. The researchers discovered a mathematical pattern in the orbital periods of the inner six planets, which was strongly suggestive of an 18.77 day period for planet h.

"It had me worried for a while that we were seeing what we wanted to see. Things are almost never exactly as you expect in this field - there are usually surprises around every corner, but theory and observation matched perfectly in this case."

TRAPPIST-1 is a middle-aged, ultra cool dwarf star, much less luminous than the Sun and only a bit larger than the planet Jupiter. The star, which is nearly 40 light-years or about 235 trillion miles away in the constellation of Aquarius, is named after the ground-based Transiting Planets and Planetesimals Small Telescope (TRAPPIST), the facility that first found evidence of planets around it in 2015.

The TRAPPIST survey is led by Michael Gillon of the University of Liege, Belgium, who is also a coauthor on this research. In 2016, Gillon's team announced the detection of three planets orbiting TRAPPIST-1 and this number was upped to seven in a subsequent 2017 paper. Three of TRAPPIST-1's planets appear to be within the star's habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance.

Such exoplanets are detected when they transit, or pass in front of, their host star, blocking a measurable portion of the light. Gillon's team was able to observe only a single transit for TRAPPIST-1h, the farthest-out of the star's seven progeny, prior to the data analyzed by Luger's team.

Luger led a multi-institution international research team that studied the TRAPPIST-1 system more closely using 79 days of observation data from K2, the second mission of the Kepler Space Telescope. The team was able to observe and study four transits of TRAPPIST-1h across its star.

The team used the K2 data to further characterize the orbits of the other six planets, help rule out the presence of additional transiting planets, and determine the rotation period and activity level of the star. They also discovered that TRAPPIST-1's seven planets appear linked in a complex dance known as an orbital resonance where their respective orbital periods are mathematically related and slightly influence each other.

"Resonances can be tricky to understand, especially between three bodies. But there are simpler cases that are easier to explain," Luger said. For instance, closer to home, Jupiter's moons Io, Europa and Ganymede are set in a 1:2:4 resonance, meaning that Europa's orbital period is exactly twice that of Io, and Ganymede's is exactly twice that of Europa.

These relationships, Luger said, suggested that by studying the orbital velocities of its neighbor planets they could predict the exact orbital velocity, and hence also orbital period, of TRAPPIST-1h even before the K2 observations. Their theory proved correct when they located the planet in the K2 data.

TRAPPIST-1's seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets.

The resonances are "self-correcting," Luger said, such that if one planet were to somehow be nudged off course, it would lock right back into resonance. "Once you're caught into this kind of stable resonance, it's hard to escape," he said.

All of this, Luger said, indicates that these orbital connections were forged early in the life of the TRAPPIST-1 system, when the planets and their orbits were not fully formed.

"The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step," Luger said. "This makes the system a great testbed for planet formation and migration theories."

It also means that while TRAPPIST-1h is now extremely cold - with an average temperature of 173 Kelvin (minus 148 F) - it likely spent several hundred million years in a much warmer state, when its host star was younger and brighter.

"We could therefore be looking at a planet that was once habitable and has since frozen over, which is amazing to contemplate and great for follow-up studies," Luger said.

Luger said he has been working with data from the K2 mission for a while now, researching ways to reduce "instrumental noise" in its data resulting from broken reaction wheels - small flywheels that help position the spacecraft - that can overwhelm planetary signals.

"Observing TRAPPIST-1 with K2 was an ambitious task," said Marko Sestovic, a doctoral student at the University of Bern and second author of the study.

In addition to the extraneous signals introduced by the spacecraft's wobble, the faintness of the star in the optical (the range of wavelengths where K2 observes) placed TRAPPIST-1h "near the limit of what we could detect with K2," he said. To make matters worse, Sestovic said, one transit of the planet coincided with a transit of TRAPPIST-1b, and one coincided with a stellar flare, adding to the difficulty of the observation.

"Finding the planet was really encouraging," Luger said, "since it showed we can still do high-quality science with Kepler despite significant instrumental challenges."

Luger's UW co-authors are astronomy doctoral students Ethan Kruse and Brett Morris, post-doctoral researcher Daniel Foreman-Mackey and professor Eric Agol (Guggenheim Fellow). Agol separately helped confirm the approximate mass of TRAPPIST-1 planets with a technique he and colleagues devised called "transit timing variations" that describes planets' gravitational tugs on one another.

Luger said the TRAPPIST-1 system's relative nearness "makes it a prime target for follow-up and characterization with current and upcoming telescopes, which may be able to give us information about these planets' atmospheric composition."

"A Seven-Planet Resonant Chain in TRAPPIST-1," Rodrigo Luger et al., 2017 May 22, Nature Astronomy

EXO WORLDS
Astronomers Confirm Orbital Details of TRAPPIST-1h
Pasadena CA (JPL) May 22, 2017
Scientists using NASA's Kepler space telescope identified a regular pattern in the orbits of the planets in the TRAPPIST-1 system that confirmed suspected details about the orbit of its outermost and least understood planet, TRAPPIST-1h. TRAPPIST-1 is only eight percent the mass of our sun, making it a cooler and less luminous star. It's home to seven Earth-size planets, three of which orb ... read more

Related Links
Trappist-1
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

NASA Acting Administrator Statement on Fiscal Year 2018 Budget Proposal

EXO WORLDS
Neptune: Neutralizer-free plasma propulsion

Rocket Lab scrubs test launch attempt from Launch Complex 1

Russia to create new Super-Heavy Class rocket after 2025

Spaceflight buys Electron Rocket from Rocket Lab

EXO WORLDS
Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

How hard did it rain on Mars

EXO WORLDS
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

EXO WORLDS
AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

EXO WORLDS
Arralis launches plug and play Ka band chipset

Physicists discover mechanism behind granular capillary effect

HPC4MfG paper manufacturing project yields first results

Unfolding the folding mechanism of ladybug wings

EXO WORLDS
Scientists propose synestia, a new type of planetary object

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Kepler Telescope Spies Details of Trappist-1's Outermost Planet

Astronomers Confirm Orbital Details of TRAPPIST-1h

EXO WORLDS
Hubble spots moon around third largest dwarf planet

NASA asks science community for Europa Lander Instruments ideas

Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.