. 24/7 Space News .
TECH SPACE
Keeping Our Cool in Space
by Melissa Gaskill for ISS Science News
Houston TX (SPX) Mar 01, 2017


The experiment hardware, which installs in the Multi-purpose Small Payload Rack in the KIBO module of the space station. Image courtesy JAXA. For a larger version of this image please go here.

As spacecraft become larger, the heat they produce also increases. That means vehicles built for long-term space exploration need more efficient cooling systems. The Two-Phase Flow investigation looks at the heat transfer characteristics of how boiling liquids turn into vapor in microgravity. Flow boiling is boiling with forced flow over a heated surface, while two-phase flow refers to both phases - vapor and liquid - flowing together in a single channel or tube.

Using a loop with a transparent heating tube aboard the International Space Station, researchers will establish flow rate, heating power, ratio of vapor to total flow, and other effects under different conditions. These data will contribute to better fundamental understanding of the behavior of liquid and vapor and the mechanism of how heat is transferred in microgravity.

On Earth, this understanding has potential applications in cooling system design for high performance computers, data servers, and electric vehicles.

Satoshi Matsumoto, a project scientist with the Japan Aerospace Exploration Agency (JAXA), said "Thermal management systems must remove large amounts of thermal energy, transport waste heat long distances to radiators, and cool high levels of thermal energy generated by power devices. Accomplishing all this requires more efficient methods to remove thermal energy, and devices using boiling and two-phase flow show more promise than conventional methods."

Boiling removes heat by turning liquid into vapor at the heated surface. Cooling systems use condensers that cool the vapor and produce condensation on the surface of the unit, thus turning that vapor back into a liquid, in a continuous cycle. In a two-phase flow system, heat is removed when the liquid vaporizes during boiling, resulting in high-performance heat removal and transportation.

Mixtures of liquids and bubbles behave very differently in space, however.

On Earth, bubbles generated by boiling leave the surface of the liquid because of buoyant force - the bubbles are about 1,000 times less dense than the liquid. That buoyant force disappears in microgravity, so bubbles do not easily detach from the surface. They essentially form an insulating layer at the surface and could significantly decrease heat transfer.

The investigation will establish a database useful in designing next-generation systems for managing heat in space. Currently, no coherent database exists for the flow and heat transfer behaviors of mixtures of liquids and vapors used for flow boiling in microgravity.

"A database of boiling two-phase flow also can show us the conditions where gravity effect disappears, even if the coolant or geometry of pipes change," Matsumoto said. "This is important for designing cooling systems for space referencing results from the orbital experiment despite the limited number of experimental conditions."

"In summary, our scientific goals are to clarify detailed mechanisms of heat transfer, establish a map of the dominant forces, and clarify details of liquid-vapor flow behaviors," said principal investigator Haruhiko Ohta, a researcher in the Department of Aeronautics and Astronautics at Kyusyu University in Japan.

"This microgravity experiment will advance fundamental understanding of boiling two-phase flow, especially the relationship between the heat transfer and behavior at the interface."

In addition, JAXA will establish standards for spacecraft thermal management systems using boiling two-phase circulation loops, including heat pipe loops as an alternative passive method to the pumped loop tested in this investigation.

More efficient thermal management systems, in space and on Earth, will help us keep our cool.

TECH SPACE
ESA's six-legged Suntracker flying on a Dragon
Paris (ESA) Feb 21, 2017
Tomorrow, a Space-X Dragon cargo ferry will be launched to the International Space Station packed with supplies, experiments, tools and food for the six astronauts living and working high above Earth. In the unpressurised cargo hold is a new NASA sensor that will monitor our atmosphere with a helping hand from ESA. The Space Station flies 400 km above our planet at 28 800 km/h, experiencin ... read more

Related Links
Two-Phase Flow experiment at ISS
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russian cargo ship docks with space station

Russia to carry out tourist flights around Moon by 2022

NASA selects proposals for first-ever Space Technology Research Institutes

NASA saves energy and water with new modular supercomputing facility

TECH SPACE
Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

Sounding Rocket Flies in Alaska to Study Auroras

SpaceX cargo ship arrives at space station

SpaceX cargo ship aborts rendezvous with space station

TECH SPACE
NASA mulls putting astronauts on deep space test flight

Opportunity leaving crater rim for the Plains of Meridiani

Scientists say Mars valley was flooded with water not long ago

Researchers pinpoint watery past on Mars

TECH SPACE
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

TECH SPACE
Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

TECH SPACE
Raytheon gets contract for Silent Knight radar systems

Kelvin Hughes to provide SharpEye radars for U.K. OPVs

Terma partner wins Indian radar contract

Two radar eyes are better than one

TECH SPACE
Does Pluto Have The Ingredients For Life?

Ancient microbes push limits of what life can survive on Earth, and off

Prediction: More gas-giants will be found orbiting Sun-like stars

From Rocks, Evidence of a 'Chaotic Solar System'

TECH SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.