. 24/7 Space News .
SPACE SCOPES
JWST Instruments Are Coming In From The Cold
by Staff Writers
Paris (ESA) Feb 04, 2016


Lowering the JWST ISIM into the cryo-vacuum chamber. Image courtesy NASA/Chris Gunn.

After being tested at extremely low temperatures for more than two months, the four instruments of the James Webb Space Telescope are preparing to come in from the cold. First indications from the NIRSpec and MIRI teams are that both instruments have performed remarkably well during these most recent tests in space-like conditions, but there are many weeks of data review to come before the teams will know if the instruments are ready to move to the next stage of integration with the telescope.

By mid-February, the instruments will have reached room temperature and will leave the cryo-vacuum test chamber at Goddard for the last time.

In October 2018, the 6.5 tonne James Webb Space Telescope (JWST) will be launched on an Ariane 5, to be placed in an operating orbit at L2, some 1.5 million km from Earth on the anti-sunward side. Once there, JWST will begin its mission to investigate the cosmos by observing a wide range of targets that will include detecting the first galaxies in the Universe and following their evolution over cosmic time, witnessing the birth of new stars and their planetary systems, and studying planets in our Solar System and around other stars.

JWST carries a suite of four instruments, NIRSpec (Near Infrared Spectrograph), MIRI (Mid-Infrared Instrument), NIRCam (Near-Infrared Camera), and FGS/NIRISS (Fine Guidance System/Near-InfraRed Imager and Slitless Spectrograph), which are housed in the Integrated Science Instrument Module (ISIM). Two of these instruments, NIRSpec and MIRI, are contributed by ESA, European institutes, and industry, with contributions from NASA's JPL and GSFC.

Unlike its predecessor, the Hubble Space Telescope, which could be serviced and repaired by Space Shuttle crews, JWST is not currently intended to be reachable by service crews, and therefore extensive and continuous testing of all the JWST components, prior to launch, is essential for the success of this ambitious project.

In this context, for the past few months about 60 people from the NIRSpec and MIRI teams have been working alongside colleagues from Canada and the US as the third, long-duration cryo-vacuum test, called ISIM CV-3, has been carried out in the Space Environment Simulator (SES) test chamber at NASA's Goddard Space Flight Center.

This '24/7' test began on 27 October 2015 and continued without changing pace through the festive season, which meant that some of the teams spent Thanksgiving, Christmas and the New Year behind computer terminals, running the tests and monitoring progress. And more recently, the teams also had to cope with preparing to be 'snowed in' during the winter storm that hit the east coast of the US in January.

This is not the first time that NIRSpec and MIRI have been tested in the cryo-vacuum chamber at Goddard. A first test campaign took place at the end of 2013, with MIRI and FGS/NIRISS installed on the ISIM. A second test campaign, lasting 116 days and involving all four instruments on the ISIM, was completed during the summer of 2014. At that stage it was known that there was still work to be done on some of the instruments to bring them to their flight configuration.

The near-infrared detectors that were used by NIRCam, NIRSpec and FGS/NIRISS were found to be degrading and had to be replaced by improved ones. For NIRSpec, another problem that had emerged was that a significant number of the 250,000 microshutters that are used to select the celestial objects to be analysed by the detectors remained shut after acoustic testing. This led to some reworking of the instrument, including the replacement of the microshutters and detectors.

With all four instruments in their final flight configuration, ISIM was then subjected to vibration and acoustic tests to mimic the conditions at launch. After this, the two big questions were: how had the instruments withstood that treatment, and how well had the new detectors and the microshutter sub-system in NIRSpec been aligned within their optical benches?

By running CV-3, the instrument specialists wanted to test how the flight-configured instruments would respond in space-like conditions after a simulated launch. Also, they used this last ISIM cold test to re-calibrate their instruments in their new, reworked, configurations.

In December, NIRSpec-specific tests were carried out. As the refurbishment of that instrument was done at room temperature and incorporated components that expand or contract at different rates when heated or cooled, this was potentially a complex operation. When placing and aligning components, the NIRSpec team had to anticipate the minute changes to the structure that would take place when the instrument was later cooled down to its operating temperature of 40 K.

While the instrument behaviour is well understood, and there are sophisticated simulations available to model the changes that should occur, it was still a tense period while the team waited for confirmation that their careful preparation had paid off. It was with relief and great satisfaction that the first images they obtained confirmed that the alignment of the new elements within the instrument was perfect.

Preliminary analysis of the data also indicates that the replacement of the detectors and the microshutters has been notably beneficial.

While NIRSpec, NIRCAM and FGS/NIRISS were being tested at 40 K, this was not cold enough for MIRI. This instrument is unique among the JWST instruments because it is cooled to much lower temperatures - about 7 K - by a dedicated cooler.

As a result, the MIRI optics have to be shielded from their surroundings by a special ultra-efficient thermal blanket. The flight blankets were installed on MIRI just before CV-3 began and the test campaign included dedicated tests to demonstrate that the blankets and cooler performed together as expected.

In addition, MIRI had been upgraded since the previous cryo-vacuum tests with the replacement of some electronic boards within the focal plane electronics, so the MIRI team was keen to verify that the new boards worked as expected.

Preliminary analysis of data gathered during the MIRI-specific tests that ran in December and January appears to confirm this, with the instrument performance measured to be as good as before the change, and new features, which allow faster image readout, seen to be working as expected. Final confirmation awaits complete analyses of all the test data.

An end is now in sight for the dedicated instrument experts who have been participating in CV-3. With the cycle of cryo-vacuum tests completed, the chamber is now being warmed up and, once room temperature has been reached, a series of tests will be run to confirm that all the systems have survived their simulated space trip in Goddard's SES test chamber. The instruments are expected to emerge from the chamber by 14 February.

In the meantime, JWST's telescope is taking shape with almost all 18 mirror segments of the primary mirror in place.

Towards the end of March, the ISIM will be attached to the back of the telescope's primary mirror mounted on the Optical Telescope Element (OTE), to form the observatory super-element referred to as the "OTIS".

The next cryo-vacuum test campaign will be performed, beginning in February next year, on the OTIS. As the Goddard test chamber is too small for OTIS, these next tests will be carried out in Test Chamber A at NASA's Johnson Space Center in Houston, Texas, which was used to test the Apollo spacecraft.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Webb Telescope at ESA
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
Ancient Babylonians used geometry to track Jupiter
Washington DC (SPX) Jan 29, 2016
Analysis of ancient Babylonian tablets reveals that, to calculate the position of Jupiter, the tablets' makers used geometry, a technique scientists previously believed humans had not developed until at least 1,400 years later, in 14th century Europe. These tablets are the earliest known examples of using geometry to calculate positions in time-space and suggest that ancient Babylonian ast ... read more


SPACE SCOPES
Phase of the moon affects amount of rainfall

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

SPACE SCOPES
Sandy Selfie Sent from NASA Mars Rover

4 people to live in an HERA habitat for 30 days at JSC

Getting real - on Mars

Opportunity Reaches 12 Years on Mars!

SPACE SCOPES
Innovations in the Air

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

SPACE SCOPES
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

SPACE SCOPES
New Tool Provides Successful Visual Inspection of ISS Robot Arm

Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

SPACE SCOPES
NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Space Launch System's first flight will launch small Sci-Tech cubesats

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

SPACE SCOPES
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

SPACE SCOPES
NASA's ICESat-2 equipped with unique 3-D manufactured part

Novel 4-D printing method blossoms from botanical inspiration

Will Space Debris be Responsible for World War III?

NASA Engineers Tapped to Build First Integrated-Photonics Modem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.