Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
JILA extends laser 'combing' method to identify large, complex molecules
by Staff Writers
Boulder CO (SPX) May 06, 2016


JILA instrument that uses a frequency comb to detect large, complex molecules based on the precise frequencies, or colors, of light they absorb. The molecules are chilled and probed inside this chamber at temperatures near absolute zero. Image courtesy Spaun and JILA. For a larger version of this image please go here.

JILA physicists have extended the capability of their powerful laser "combing" technique to identify the structures of large, complex molecules of the sort found in explosives, pharmaceuticals, fuels and the gases around stars.

The advance, described in a Nature paper published online May 4, 2016 was made possible by a cooling method developed by Harvard University researchers, who co-authored the study. The JILA-Harvard work boosts the might of spectroscopy, the study of interactions between matter and light, which informs many fields, such as chemistry, physics, astronomy, imaging and remote sensing.

JILA is a partnership of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

JILA's tabletop-sized apparatus is based on a laser frequency comb, a "ruler of light" recognized in the 2005 Nobel Prize in Physics. JILA researchers developed their original molecule-detection system a decade ago. Since then, they have demonstrated the technique for applications such as breath analysis to detect disease, identification of trace gases in the atmosphere, and detection of contaminants in semiconductors.

In the combing method, molecules are placed in a hollow chamber, or cavity, in which the comb laser light bounces back and forth. A small fraction of the comb light is absorbed at specific frequencies at which the molecules rotate and vibrate. Each molecule's unique "fingerprint" is identified in the absorption patterns across the thousands of comb frequencies.

The method is sensitive and specific but, until now, has been limited to small, simple molecules made of fewer than 10 atoms. That's because even small molecules can exist in millions of rotation and vibration states, each with a different energy level, making their signals hard to pick out.

"Being able to detect and unambiguously identify large molecules has been a longstanding goal," JILA/NIST Fellow Jun Ye says.

"First, it provides fundamental insights into molecular structure and dynamics. Second, it allows us to understand increasingly complex systems. Third, for applications ranging from breath analysis to explosives detection, the capability to detect large molecules has been missing."

Previously, the JILA system probed molecules at room temperature. The upgraded system incorporates Harvard's helium buffer gas cooling method. The buffer gas chills the molecules to only a few degrees above absolute zero (to about minus 265 C or minus 445 F), drastically slowing their speed and rotation.

This simplifies and strengthens absorption signals and greatly boosts the ability to identify the molecules. In addition, the buffer gas system allows the molecules to be probed for more than 10 milliseconds, a thousand times longer than other cold molecule research systems, which may enable the tracking of cold chemical reactions.

"Instead of just a glob of mountains in the signals, you can actually start to see the individual trees," Ye says.

By probing many frequencies at once, the combing method is a thousand times more efficient than traditional single-frequency laser spectroscopy that records absorption signals one frequency at a time. The comb's precision also makes the JILA method more accurate and sensitive than conventional broadband spectroscopy using white-light sources.

The JILA team demonstrated their enhanced system by identifying organic compounds with carbon-hydrogen bonds that can vibrate and rotate in multiple ways, such as by stretching, scissoring, rocking, wagging and twisting.

The team detected the first high-resolution absorption patterns of multiple vibrations of carbon-hydrogen bonds in four complex molecules - and did so quickly, in just 30 minutes to several hours:

+ nitromethane (7 atoms, a model system for studies of complex internal vibrations), used in making pharmaceuticals, explosives and fuels;

+ naphthalene (18 atoms), used in mothballs and detected in interstellar space;

+ adamantane (26 atoms), derivatives of which are used in drugs and lubricants; and

+ hexamethylenetetramine (22 atoms), which is of interest in astronomy and is used to make plastics, pharmaceuticals and explosives such as RDX.

Ye says the JILA instrument may help scientists finally probe and understand huge structures such as buckyballs, which are round molecules of 60 carbon atoms. In addition, the method may enable studies of new molecular species and real-time chemical reactions, tracking the behavior of highly reactive "free radicals" such as those in explosives and human breath.

The research was funded by the Defense Advanced Research Projects Agency, Air Force Office of Scientific Research, NIST and the National Science Foundation. Paper: B. Spaun, P. B. Changala, D. Patterson, B.J. Bjork, O.H. Heckl, J.M. Doyle and J. Ye. 2016. "Continuous probing of cold complex molecules with infrared frequency comb spectroscopy," Nature. Published early online May 4. DOI: 10.1038/nature17440.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
National Institute of Standards and Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Exploring phosphorene, a promising new material
Troy NY (SPX) May 02, 2016
Two-dimensional phosphane, a material known as phosphorene, has potential application as a material for semiconducting transistors in ever faster and more powerful computers. But there's a hitch. Many of the useful properties of this material, like its ability to conduct electrons, are anisotropic, meaning they vary depending on the orientation of the crystal. Now, a team including researc ... read more


TECH SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECH SPACE
Airbus DS to build STEM centre at its UK Exomars facility

Opportunity robotic arm camera passes diagnostic test

Phase two of ExoMars mission delayed to 2020

Opportunity completes mini-walkabout

TECH SPACE
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

TECH SPACE
China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

South China city gears up for satellite tourism

China's long march into space

TECH SPACE
Tim Peake goes roving

Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

TECH SPACE
New small launch vehicles

Vector Space Systems aims to redefine space commerce

Spaceport Camden Partners with NASA Innovation Competition

SpaceX vows to send capsule to Mars by 2018

TECH SPACE
Light Echoes Give Clues to Protoplanetary Disk

On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

TECH SPACE
Cavitation intensity enhanced using pressure at bubble collapse region

Exploring phosphorene, a promising new material

It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement