. 24/7 Space News .
TECTONICS
It's the rain's fault
by Staff Writers
Southampton UK (SPX) May 04, 2016


This this a picture of the Southern Alps in New Zealand. Image courtesy Dr Catriona Menzies. For a larger version of this image please go here.

Rainwater may play an important role in the process that triggers earthquakes, according to new research. Researchers from the University of Southampton, GNS Science (New Zealand), the University of Otago, and GFZ Potsdam (Germany), identified the sources and fluxes of the geothermal fluids and mineral veins from the Southern Alps of New Zealand where the Pacific and Australian Plates collide along the Alpine Fault.

From careful chemical analyses, they discovered that fluids originating from the mantle, the layer below the Earth's crust, and fluids derived from rainwater, are channelled up the Alpine Fault.

By calculating how much fluid is flowing through the fault zone at depth, the researchers showed for the first time that enough rainwater is present to promote earthquake rupture on this major plate boundary fault.

Lead researcher Dr Catriona Menzies, from Ocean and Earth Science at the University of Southampton, said: "Large, continental-scale faults can cause catastrophic earthquakes, but the trigger mechanisms for major seismic events are not well known. Geologists have long suspected that deep groundwaters may be important for the initiation of earthquakes as these fluids can weaken the fault zones by increasing pressures or through chemical reactions.

"Fluids are important in controlling the evolution of faults between earthquake ruptures. Chemical reactions may alter the strength and permeability of rocks, and if enough fluid is present at sufficiently high pressures they may aid earthquake rupture by 'pumping up' the fault zone."

The Alpine Fault is a major strike-slip fault, like the San Andreas, that fails in very large (Magnitude 8+) earthquakes around every 300 years. It last ruptured in 1717 AD and consequently it is under intense scientific scrutiny because it is a rare example of a major fault that is late in the strain-build up before rupture.

Dr Menzies said: "We show that the Alpine Fault acts as a barrier to lateral fluid flow from the high mountains of the Southern Alps towards the Tasman Sea in the west. However, the presence of mantle-derived fluids indicates that the fault also acts as a channel for fluids, from more than 35 km depth, to ascend to the surface.

"As well as mantle derived fluids, our calculations indicate that 0.02-0.05 per cent of surface rainfall reaches around six kilometres depth but this is enough to overwhelm contributions from the mantle and fluids generated during mountain-building by metamorphic reactions in hot rocks.

"This rainwater is then focused onto the fault, forced by the hydraulic head of the high mountains above and the sub-vertical fluid flow barrier of the Alpine Fault."

Funding for this research, published in Earth and Planetary Science Letters, was provided by the Natural Environmental Research Council (NERC), Deutsche Forschungsgemeinschaft, and GNS Science (New Zealand).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southampton
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Hi-tech opens up Earth's secrets
Townsville, Australia (SPX) Apr 13, 2016
JCU's Dr Rob Holm applied modern technology to existing geological data. He said the results open up completely new and original interpretations of geological processes. "This research shows the value of applying new techniques to the extensive database of already existing scientific literature," he said. "It can track the motion of tectonic plates to explain the formation of oceans and mo ... read more


TECTONICS
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECTONICS
Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

Mars' surface revealed in unprecedented detail

Space X's Red Dragons to start Mars exploration in 2018

TECTONICS
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

TECTONICS
South China city gears up for satellite tourism

China's long march into space

China's top astronaut goes to "space camp"

China open to Sino-US space cooperation

TECTONICS
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

TECTONICS
SpaceX vows to send capsule to Mars by 2018

Russia May Launch Upgraded Proton-M Rocket on May28

India to test Reusable Launch Vehicle in June

Soyuz demonstrates Arianespace mission flexibility

TECTONICS
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

TECTONICS
It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures

Engineers develop micro-sized, liquid-metal particles for heat-free soldering

Speedy bridge repair









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.