Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Inverse designing spontaneously self-assembling materials
by Staff Writers
Washington DC (SPX) May 16, 2017


This is self-assembled cluster fluid. Credit Ryan B. Jadrich

Researchers at the University of Texas at Austin are exploring how molecular simulations with the latest optimization strategies can create a more systematic way of discovering new materials that exhibit specific, desired properties.

More specifically, they did so by recasting the design goal to the microscopic, asking which interactions between constituent particles can cause them to spontaneously "self-assemble" into a bulk material with a particular property.

To find the answer, reported this week in The Journal of Chemical Physics, from AIP Publishing, they decided to zero in on how composite particles spatially organize themselves.

"Our technical inspiration came from a very different field of research - the modeling and simulation of biomolecules," said Thomas Truskett, a professor in the McKetta Department of Chemical Engineering and co-author of the work.

"Experts within that field had developed an array of tools for using molecular simulations to 'learn' which simplified-model interactions could reproduce the exquisite structural properties of large biomolecules."

They recognized this modeling approach could be used to identify simpler interparticle interactions that would spontaneously self-assemble into the more complex structures.

"Self-assembly is a phenomenon by which particles, such as atoms and molecules, spontaneously organize themselves into complex multidimensional architectures," said Truskett.

"Freezing water - crystallizing it - is one everyday example, and the manner in which water molecules arrange themselves under prescribed external conditions is dictated by their interactions or forces."

To expand the possibilities for self-assembly, the group investigated another class of particles called "colloids," which typically refer to larger molecules or nanoparticles suspended in a fluid.

"[Colloids are] interesting for self-assembly and stand apart from their smaller atomic and molecular cousins because their interactions are highly tunable," said Ryan Jadrich, a postdoctoral fellow in the McKetta Department of Chemical Engineering.

"By carefully tailoring colloidal particle interactions, we can exert unprecedented control over the microscopic organizational details to greatly influence bulk material properties."

Forward design has been the de facto approach to engineering self-assembly for many years.

"In a very simplified interpretation, forward design amounts to fabricating particles with novel interactions and then checking to see what they assemble into - hopefully something desirable," Truskett said.

"Researchers' physical intuition can help speed the process of realizing desired materials, but this approach is costly from a time perspective and requires some degree of luck or great expense."

Inverse design, which the group's work addresses, quite literally attempts the problem in reverse.

"Human researchers do what they're good at: envisioning novel and useful particle architectures. And computers do what they're good at: solving complex optimization problems," Jadrich said.

According to Truskett, one of the main benefits of the new inverse design approach is that it provides a highly general framework that can be applied in targeting self-assembly of crystalline or fluid materials "on the fly."

"[T]he method 'learns' everything it needs as the relevant data naturally emerges from an iterative, simulation-driven framework," he said. "An interesting corollary is that no precompiled auxiliary database of information is required - such data repositories were an undesirable prerequisite for earlier crystal inverse design approaches."

They computationally assembled some downright intriguing particle architectures, including one described as "Swiss cheese."

"In this case, we discovered interactions that prompted particles to self-assemble into a matrix surrounding spherical holes, a.k.a. pores or cavities," Truskett said. "Remarkably, these pores ordered into a crystalline arrangement, while the smaller 'real' particles remained in a disordered, fluidic state percolating around the pores."

Although inverse design is a relatively young and active area of research, headway is already being made toward a general and practically useful framework, according to Jadrich, where their work represents one emerging strategy. Inverse design is part of an emerging trend across scientific disciplines, using computational machine learning and statistical interference to accelerate discovery.

"Inverse design enables the discovery of much more complex materials, on computers, than ever before, and this is a trend we believe will continue," he said.

"Such tools won't soon replace human researchers, but allow researchers to focus on other, often more interesting tasks that demand creative design. The brunt of the work, which amounts to teasing out subtle details, finding patterns, or performing complex calculations, can now be relegated to automation."

The article, "Probabilistic inverse design for self-assembling materials," is authored by R.B. Jadrich, B.A. Lindquist and T.M. Truskett. The article will appear in The Journal of Chemical Physics on May, 9, 2017 [DOI: 10.1063/1.4981796].

TECH SPACE
Researchers invent process to make sustainable rubber, plastics
Newark DE (SPX) May 10, 2017
Synthetic rubber and plastics - used for manufacturing tires, toys and myriad other products - are produced from butadiene, a molecule traditionally made from petroleum or natural gas. But those manmade materials could get a lot greener soon, thanks to the ingenuity of a team of scientists from three U.S. research universities. The scientific team - from the University of Delaware, the Uni ... read more

Related Links
American Institute of Physics
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
External commercial ISS platform starts second mission

NASA Receives Proposals for Future Solar System Mission

'Road to Nowhere': Retired Cosmonaut Reveals How It Feels to Walk in Space

Orion Motor Ready for Crewed Mission

TECH SPACE
First Contract under Booster Propulsion Technology Maturation BAA Complete

GSLV Successfully Launches South Asia Satellite

ISRO Successfully Launches GSAT-9 'SAARC' South Asian Communication Satellite

Reaction Engines begins construction of UK rocket engine test facility

TECH SPACE
Seasonal Flows in Valles Marineris

NASA Rover Curiosity Samples Active Linear Dune on Mars

Is Anything Tough Enough to Survive on Mars

Japan aims to uncover how moons of Mars formed

TECH SPACE
China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

TECH SPACE
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

TECH SPACE
A bath for precision printing of 3-D silicone structures

Physical keyboards make virtual reality typing easier

Inverse designing spontaneously self-assembling materials

Scientists create hologram that changes images as it is stretched

TECH SPACE
Taking the pulse of an ocean world

When a brown dwarf is actually a planetary mass object

Lasers shed light on the inner workings of the giant larvacean

First SETI Institute Fellows Announced

TECH SPACE
Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement