. 24/7 Space News .
WATER WORLD
Invention produces cleaner water with less energy and no filter
by Staff Writers
Princeton NJ (SPX) May 18, 2017


Carbon dioxide changes the chemistry of contaminated water, which causes particles to move to one side of a channel and splitting the flow into clean and dirty streams. Image courtesy Howard Stone Lab.

The same technology that adds fizz to soda can now be used to remove particles from dirty water. Researchers at Princeton University have found a technique for using carbon dioxide in a low-cost water treatment system that eliminates the need for costly and complex filters.

The system injects CO2 gas into a stream of water as a method of filtering out particles. The gas, which mixes with the water in a system of channels, temporarily changes the water's chemistry. The chemical changes cause the contaminating particles to move to one side of the channel depending on their electrical charge. By taking advantage of this migration, the researchers are able to split the water stream and filter out suspended particles.

"You could potentially use this to clean water from a pond or river that has bacteria and dirt particles," said Sangwoo Shin, an assistant professor of mechanical engineering at the University of Hawaii at Manoa. Shin, the lead author of a paper describing the process, performed the research as a post-doctoral researcher in the laboratory of Howard Stone, the Donald R. Dixon '69 and Elizabeth W. Dixon Professor of Mechanical and Aerospace Engineering at Princeton.

In a paper published May 2 in the journal Nature Communications, the researchers describe how they built a laboratory-scale filter that removed particles three orders of magnitude (1,000-fold) more efficiently than conventional microfiltration systems. The system is low energy, with bottled carbon dioxide as the only moving part (besides the pump responsible for the flow), and has no physical filter or membrane that can clog or require replacement.

Carbon dioxide alters water's chemistry by making it slightly more acidic: the tart taste of carbonic acid is familiar in most sodas, and its absence is a reason for flat soda's unpleasant flavor. In chemical terms, the acidity means that when CO2 dissolves in water it creates charged particles called ions. One of those ions, a positively charged hydrogen atom, moves very quickly through the water solution. Another, a negatively charged bicarbonate molecule, moves more slowly. The ions' movement through the water creates a subtle electric field; this field draws particles in the water - which have either negative or positive charges of their own - toward one side of the water stream.

Because most contaminants have some amount of surface charge, the electric field is an effective way to strain them from water. The researchers' device takes advantage of this electric sorting by drawing the contaminants to one side of the flow and then splitting the water into two channels. One path carries water containing the contaminating particles and the other holds clean water. Because the system does not have a membrane or a mechanical filter, clogging is not a problem.

To maintain the electric field, the researchers needed to keep the ions moving through the water channels. They accomplished this by making the channel walls out of material that is permeable to carbon dioxide, in this case silicone rubber (polydimethylsiloxane). Pressurized carbon dioxide diffuses through one wall of the channel and permeates out the other side. Shin said if the channel is enclosed, designers could capture the carbon dioxide gas for later use. When finished, the dissolved CO2 can be easily removed by exposing the water to the air so that the water contains only normal levels of carbon dioxide; it is not carbonated.

The researchers thought of the technique while examining the motion of colloidal particles in a salt gradient - a term for the interface between bodies of salt and fresh water. In a salt gradient, the difference in chemistry of the two solutions causes pressure on particles. Shin said the researchers were observing the motion of charged particles in the salt water when they realized the phenomenon could be useful as a filter.

Salt - sodium chloride - would not be useful for water purification because the salt would remain in the water after filtration. So the researchers thought to substitute carbon dioxide because it is cheap, not harmful for humans to ingest and as easy to remove from water as opening a can of soda.

The researchers said using a soluble gas as a method of controlling particles in a solution could lead to other industrial or scientific applications beyond water filtration. "The principles being explored in this research we hope will also be impactful in other research areas," Stone said.

Shin said the CO2 system could be particularly useful in the developing world because it does not require the installation and replacement of filters. The idea may be useful for portable systems. It is also relatively low cost, only requiring a canned source of carbon dioxide to use.

"It is definitely able to scale up to a hundred liters per hour, which meets a practical household standard," Shin said.

Another use would be as a supplement to a desalinization plant. Many types of desalinization use membranes to strain out salt molecules, but biological particles including viruses and bacteria are able to pass through the membranes. Shin said the carbon dioxide system could strain out the particles before or after the water passes through the desalinization membrane, reducing the need to treat the water with chemicals such as chlorine.

Shin is now working on methods to scale the system for possible use in water treatment plants to supply larger communities. He said the basic science works, but further engineering is needed to create a large-scale carbon dioxide filter.

"In Hawaii, we have a fresh water problem," he said. "We hope to scale up the device to help solve it."

WATER WORLD
Dying Guatemala lake underlines climate change threat
Atescatempa, Guatemala (AFP) May 15, 2017
The dried-out oyster shells lie on a landscape parched and cracked by the sun. This is what is left of Lake Atescatempa, once a vast blue-green body of water in southwestern Guatemala. Now the lake is dying, a conspicuous victim of the climate change that is projected to profoundly and irreversibly affect Central America. A prolonged drought descended on the region last year, shrivel ... read more

Related Links
Princeton University, Engineering School
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Older Americans warm to new technology: survey

Six-legged livestock - sustainable food production

'Awesomesauce,' proclaims US astronaut on historic spacewalk

External commercial ISS platform starts second mission

WATER WORLD
Mining the moon for rocket fuel to get us to Mars

ISRO to Launch GSLV Mark III, Its Heaviest Rocket Soon

SpaceX launches Inmarsat communications satellite

N. Korea's 'new missile' has unprecedented range: experts

WATER WORLD
Mars Rover Opportunity Begins Study of Valley's Origin

Opportunity Reaches 'Perseverance Valley'

Ancient Mars impacts created tornado-like winds that scoured surface

Seasonal Flows in Valles Marineris

WATER WORLD
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

WATER WORLD
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

WATER WORLD
Adhesive behavior of self-constructive materials measured for first time

Unfolding the folding mechanism of ladybug wings

World's thinnest hologram unveiled by Chinese-Australian research team

Energy-efficient green route to magnesium production

WATER WORLD
Metabolism, not RNA, jump-started life's molecular beginnings

Primitive Atmosphere Found Around 'Warm Neptune'

New 'styrofoam' planet provides tools in search for habitable planets

Variable Winds on Hot Giant Exoplanet Help Study of Magnetic Field

WATER WORLD
Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.