. 24/7 Space News .
Integral Catches Stellar Corpses By The Tail

Artist's view of an anomalous X-ray pulsar as seen by Integral.
by Staff Writers
Utrecht, The Netherlands (SPX) Mar 17, 2006
Tiny stellar 'corpses' have been caught blasting surprisingly powerful X-rays and gamma rays across our galaxy by ESA's gamma-ray observatory Integral. This discovery links these objects to the most magnetically active bodies in the Universe and forces scientists to reconsider just how dead such stellar corpses really are.

Known as anomalous X-ray pulsars (AXPs), the stellar corpses were first spotted pulsing low-energy X-rays into space during the 1970s by the Uhuru X-ray satellite. AXPs are extremely rare with only seven known to exist. The X-rays were first thought to be produced by matter falling from a companion star onto the AXP.

An alternative was that each AXP is the spinning core of a dead star, known as a neutron star, sweeping beams of energy through space like a cosmic lighthouse. When these beams cross Earth's line of sight, the AXP blinks on and off.

However, this scenario required the AXP's magnetic field to be a thousand million times stronger than the strongest steady magnetic field achievable in a laboratory on Earth. Nevertheless, the Integral observations show that the magnetic solution is correct.

The newly detected emission, known to astronomers as a 'hard tail', of high-energy ('hard') X-rays and gamma rays also comes in the form of regular pulses every 6�12 seconds depending upon which AXP is observed.

Discovered in three of the four AXPs studied, the hard tails have a distinctive energy signature that forces astronomers to consider that they are produced by super-strong magnetic fields.

"The amount of energy in the hard tail is ten to almost one thousand times more than can be explained by a kind of magnetic friction between the spinning AXP and surrounding space," said Wim Hermsen of SRON, the Netherlands Institute for Space Research, Utrecht, who together with SRON colleagues made the observations. This leaves so-called 'magnetic field decay' as the only viable alternative.

Neutron stars with super-strong magnetic fields are dubbed 'magnetars'. Created from the core of a gigantic star that has exploded at the end of its life, each magnetar is only around 15 kilometres in diameter yet contains more than one and a half times the mass of the Sun.

Magnetars are also responsible for the 'soft gamma-ray repeaters' (SGRs), which explosively release massive quantities of energy when catastrophic reorganisations of their magnetic fields spontaneously take place. The big difference between an SGR and an AXP is that the process is continuous rather than explosive in an AXP and less energetic.

"Somehow these objects are tapping the enormous magnetic energy contained beneath their surfaces and funnelling it into space," said Hermsen.

Exactly how that happens is the focus of future work. It is possible that SGRs, of which five are known, turn into AXPs once they have exploded enough of their energy into space.

All known AXPs except one are clustered towards the plane of our galaxy, the Milky Way, indicating that they are the result of recent stellar explosions; some are even wreathed in the exploded gaseous remnants of their former stars.

The other known AXP is in a satellite galaxy of the Milky Way. The hard tails were discovered by Integral serendipitously, thanks to its unique wide-field camera, the Imager on-Board Integral Satellite (IBIS).

"This is one of the things you hope for when you run an observatory like Integral," said Christoph Winkler, ESA's Integral project scientist. As the AXPs prove, the stellar afterlife is more alive than astronomers once thought.

Related Links
ESA's Integral
SRON - Netherlands Institute for Space Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


River Of Stars Flows Through Milky Way
Pasadena CA (SPX) Mar 15, 2006
Astronomers have discovered a narrow stream of stars extending at least 45 degrees across the northern sky. The stream is about 76,000 light-years distant from Earth and forms a giant arc over the disk of the Milky Way galaxy.







  • Integral Looks At Earth To Seek Source Of Cosmic Radiation
  • NASA And New York City Museum Bring Universe Down To Earth
  • Omega World Travel Targeting Emerging Space Tourism Opportunities
  • Russia Signs Space Cooperation Deal With Europe

  • Scientist Posits Non-Water Source For Some Martian Gullies
  • Building The First Martian Map Of The 21st Century
  • Years Of Observing Combined Into Best-Yet Look At Mars Canyon
  • Mars Rover Update: Opportunity Captures Panorama At Payson

  • ICO North America To Launch GEO Sat Using ILS Atlas V
  • ST5 Launch Aborted At Last Minute
  • Prep Begins For Next Ariane 5 Launch
  • Weather Forces Postponement For ST5 Launch

  • Goodrich Delivers True Color Images On Japanese EO Satellite
  • International Symposium On Radar Altimetry To Meet In Venice
  • Satellites Ensure Safe Passage Through Treacherous Waters In Ocean Race
  • ESA Satellite Program Monitors Dangerous Ocean Eddies

  • To Pluto And Beyond
  • New Horizons Update: 'Boulder' and 'Baltimore'
  • New Horizons Set For A Comfortable Cruise Out To Jupiter And Pluto Transfer
  • Questioning Pluto

  • Integral Catches Stellar 'Corpses' By The Tail
  • Astronomers Get A Chance To Size Up A Brown Dwarf
  • The Oldest Explosion In The Universe
  • Insect-Eye Instrument Reveals Turbulent Life Of Distant Galaxies

  • SMART-1 Tracks Crater Lichtenberg And Young Lunar Basalts
  • Quantum Technique Can Foil Hackers
  • Noah's Ark On The Moon
  • X PRIZE Foundation And The $2M Lunar Lander Challenge

  • RFID-Based Asset Management With Innovative Sensory Technology
  • Trimble Introduces Quadband GSM/GPRS Version of the TrimTrac Locator
  • Getting Lost May Soon Become A Thing Of The Past
  • GIOVE A Transmits Loud And Clear

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement