Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Inside Rosetta's comet
by Staff Writers
Paris (ESA) Feb 05, 2016

These images of comet 67P/Churyumov-Gerasimenko were taken by Rosetta's navigation camera between August and November 2014. Top row, left to right: Comet pictured on 6 August 2014, at a distance of 96 km; 14 August, at a distance of 100 km; 22 August, at a distance of 64 km; 14 September, at a distance of 30 km. Bottom row, left to right: Comet pictured on 24 September, at a distance of 28 km; 24 October, at a distance of 10 km; 26 October, at a distance of 8 km; 6 November, at a distance of 30 km. Image courtesy ESA/Rosetta/NavCam. For a larger version of this image please go here.

There are no large caverns inside Comet 67P/Churyumov-Gerasimenko. ESA's Rosetta mission has made measurements that clearly demonstrate this, solving a long-standing mystery.

Comets are the icy remnants left over from the formation of the planets 4.6 billion years ago. A total of eight comets have now been visited by spacecraft and, thanks to these missions, we have built up a picture of the basic properties of these cosmic time capsules. While some questions have been answered, others have been raised.

Comets are known to be a mixture of dust and ice, and if fully compact, they would be heavier than water. However, previous measurements have shown that some of them have extremely low densities, much lower than that of water ice. The low density implies that comets must be highly porous.

But is the porosity because of huge empty caves in the comet's interior or it is a more homogeneous low-density structure?

In a new study, published in this week's issue of the journal Nature, a team led by Martin Patzold, from Rheinische Institut fur Umweltforschung an der Universitat zu Koln, Germany, have shown that Comet 67P/Churyumov-Gerasimenko is also a low-density object, but they have also been able to rule out a cavernous interior.

This result is consistent with earlier results from Rosetta's CONSERT radar experiment showing that the double-lobed comet's 'head' is fairly homogenous on spatial scales of a few tens of metres.

The most reasonable explanation then is that the comet's porosity must be an intrinsic property of dust particles mixed with the ice that make up the interior. In fact, earlier spacecraft measurements had shown that comet dust is typically not a compacted solid, but rather a 'fluffy' aggregate, giving the dust particles high porosity and low density, and Rosetta's COSIMA and GIADA instruments have shown that the same kinds of dust grains are also found at 67P/Churyumov-Gerasimenko.

Patzold's team made their discovery by using the Radio Science Experiment (RSI) to study the way the Rosetta orbiter is pulled by the gravity of the comet, which is generated by its mass.

The effect of the gravity on the movement of Rosetta is measured by changes in the frequency of the spacecraft's signals when they are received at Earth. It is a manifestation of the Doppler effect, produced whenever there is movement between a source and an observer, and is the same effect that causes emergency vehicle sirens to change pitch as they pass by.

In this case, Rosetta was being pulled by the gravity of the comet, which changed the frequency of the radio link to Earth. ESA's 35-metre antenna at the New Norcia ground station in Australia is used to communicate with Rosetta during routine operations. The variations in the signals it received were analysed to give a picture of the gravity field across the comet. Large internal caverns would have been noticeable by a tell-tale drop in acceleration.

ESA's Rosetta mission is the first to perform this difficult measurement for a comet.

"Newton's law of gravity tells us that the Rosetta spacecraft is basically pulled by everything," says Martin Patzold, the principal investigator of the RSI experiment.

"In practical terms, this means that we had to remove the influence of the Sun, all the planets - from giant Jupiter to the dwarf planets - as well as large asteroids in the inner asteroid belt, on Rosetta's motion, to leave just the influence of the comet. Thankfully, these effects are well understood and this is a standard procedure nowadays for spacecraft operations."

Next, the pressure of the solar radiation and the comet's escaping gas tail has to be subtracted. Both of these 'blow' the spacecraft off course. In this case, Rosetta's ROSINA instrument is extremely helpful as it measures the gas that is streaming past the spacecraft. This allowed Patzold and his colleagues to calculate and remove those effects too.

Whatever motion is left is due to the comet's mass. For Comet 67P/Churyumov-Gerasimenko, this gives a mass slightly less than 10 billion tonnes. Images from the OSIRIS camera have been used to develop models of the comet's shape and these give the volume as around 18.7 km3, meaning that the density is 533 kg/m3.

Extracting the details of the interior was only possible through a piece of cosmic good luck.

Given the lack of knowledge of the comet's activity, a cautious approach trajectory had been designed to ensure the spacecraft's safety. Even in the best scenario, this would bring Rosetta no closer than 10 km.

Unfortunately, prior to 2014, the RSI team predicted that they needed to get closer than 10 km to measure the internal distribution of the comet. This was based on ground-based observations that suggested the comet was round in shape. At 10 km and above, only the total mass would be measurable.

Then the comet's strange shape was revealed as Rosetta drew nearer. Luckily for RSI, the double-lobed structure meant that the differences in the gravity field would be much more pronounced, and therefore easier to measure from far away.

"We were already seeing variations in the gravity field from 30 km away," says Patzold.

When Rosetta did achieve a 10 km orbit, RSI was able to gather detailed measurements. This is what has given them such high confidence in their results, and it could get even better.

In September, Rosetta will be guided to a controlled impact on the surface of the comet. The manoeuvre will provide a unique challenge for the flight dynamics specialists at ESA's European Space Operations Centre (ESOC) in Darmstadt, Germany.

As Rosetta gets nearer and nearer the complex gravity field of the comet will make navigating harder and harder. But for RSI, its measurements will increase in precision. This could allow the team to check for caverns just a few hundred metres across.

Research Paper: "A homogeneous nucleus for Comet 67P/ Churyumov-Gerasimenko from its gravity field," by M. Patzold et al. is published in the journal Nature.


Related Links
Rosetta at ESA
Asteroid and Comet Mission News, Science and Technology

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Philae comet probe: World prepares for final farewell
Paris (AFP) Feb 3, 2016
In November 2014, a brave explorer on a daring mission strapped on a pair of studded boots and a hard hat, stuffed a cheese sandwich and a compass into a backpack, and leapt from a spacecraft. After a seven-hour freefall, our protagonist touched down on a comet and became a hero back home, where Earthlings followed his every tweet, collected soft toys in his likeness, and fretted when he fel ... read more

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Phase of the moon affects amount of rainfall

Russia postpones manned Lunar mission to 2035

Sandy Selfie Sent from NASA Mars Rover

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Getting real - on Mars

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Innovations in the Air

Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

Russian Cosmonauts to Attach Thermal Insulation to ISS

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Space Launch System's first flight will launch small Sci-Tech cubesats

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

Initial launcher assembly clears Ariane 5 for its payload integration process

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

NASA's ICESat-2 equipped with unique 3-D manufactured part

Novel 4-D printing method blossoms from botanical inspiration

Will Space Debris be Responsible for World War III?

Controlling the magnetic properties of individual iron atom

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.