Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Infrared encoding of images with metasurfaces
by Staff Writers
Washington DC (SPX) Jan 01, 2016

This is a picture of a visible sample and its emission response at several polarizations and wavelengths. Image courtesy M. Makhsiyan/ONERA. For a larger version of this image please go here.

Researchers at MINAO, a joint lab between The French Aerospace Lab in Palaiseau and the Laboratoire de Photonique et de Nanostructures in Marcoussis, have recently demonstrated metamaterial resonators that allow emission in the infrared to be tuned through the geometry of the resonator.

Their setup uses sub-wavelength scale metal-insulator-metal, or MIM, resonators to spatially and spectrally control emitted light up to its diffraction limit. This allows an array of resonators to be used to form an image in the infrared - much as way the pixels in a television screen can form a visible light image - with potential breakthrough applications in infrared televisions, biochemical sensing, optical storage, and anti-counterfeit devices.

"MIM metasurfaces are great candidates for infrared emitters thanks to their ability to completely control thermal emission, which is groundbreaking compared to the usual thermal sources, such as a blackbody," said Patrick Bouchon, a researcher at The French Aerospace Lab, also known as ONERA. "Moreover, this study shows the possibility to create infrared images with the equivalent of visible colors."

Bouchon and his colleagues detail their work this week in Applied Physics Letters, from AIP Publishing. The researchers previously demonstrated the ability to manipulate light through tailoring its absorption or converting its polarization, and have investigated the 'funneling effect,' in which incoming light energy is coupled to a nanoantenna.

Much as its name implies, a metal-in-metal, or MIM, nanoantenna consists of a rectangular metallic patch on top of an insulating material, atop another metallic layer. According to Bouchon, most metasurfaces - the aggregate of many nanoantennas on a substrate - are periodic repetitions of a given pattern, and exhibit no spatial modulation. Additionally, the idea of modifying the emissivity with nanostructures is relatively recent - the possibility to combine several antennas in the same subwavelength period was first shown by their team in 2012.

For their MIMs, Bouchon and his colleagues deposited 50 nanometer-thick rectangular patches of gold on top of a 220 nanometer silicon oxide layer, which sat atop an opaque 200 nanometer gold layer.

"We had to theoretically predict the response of 100 million antennas, and to subsequently fabricate it," said Mathilde Makhsiyan, a PhD student at The French Aerospace Lab. To do this, the researchers developed their own electromagnetic software, as well as specific software to generate the e-beam files for the fabrication of spatially modulated emissivity metasurfaces.

Once fabricated, each nanoantenna acts as an independent deep subwavelength emitter for a given polarization and wavelength. This allows it to control emission properties such as wavelength, polarization, and intensity with its specific geometry and orientation. When juxtaposed on a large scale, these MIMS cause the emissivity to be defined at the sub-wavelength scale, allowing the researchers to encode several images on the same metasurface.

This emission information is encoded in a unit cell that has a size smaller than that of the wavelength, on account of the effect of the antennas' varied geometries and orientations on how the information is encoded. Because of this, two neighboring cells can possess different encoded information and encode the information spatially. This ultimately allows for the creation of a static infrared image, similar to an LCD screen.

Future work for Bouchon and his colleagues includes independently controlling each of these pixels to create a dynamic emission of light - a first step towards an infrared TV - as well as creating a start-up business to develop anti-counterfeit devices.

The article, 'Shaping the spatial and spectral emissivity at the diffraction limit,' is authored by Mathilde Makhsiyan, Patrick Bouchon, Julien Jaeck, Jean-Luc Pelouard, and Riad Haidar. It will appear in the journal Applied Physics Letters on Dec. 22, 2015 (DOI: 10.1063/1.4937453)


Related Links
American Institute of Physics
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Super strong, lightweight metal could build tomorrow's spacecraft
Los Angeles (UPI) Dec 24, 2015
A new metal, a combination of magnesium and ceramic silicon carbide nanoparticles, is promising to change how airplanes, spacecraft and cars are manufactured. Its inventors, materials scientists at UCLA, say the metal is super strong, but most importantly, lightweight. The metal's stiffness-to-weight ratio is what sets it apart from similar inventions. Researchers say the metal m ... read more

Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

Opportunity positioned on steeper slopes for another Martian winter

Astronauts Tour Future White Room, Crew Access Tower

Celebrity chefs create gourmet delights for astronauts

15 in '15: NASA's Commercial Crew Program Moves Closer to Flight

Researchers Recall Work on First Rendezvous in Space

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

Two whacks is all it takes for spacewalk repair

Unscheduled spacewalk likely on Monday

NASA spacewalk to fix ISS rail car

45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

Nature's masonry: The first steps in how thin protein sheets form polyhedral shells

Move aside carbon: Boron nitride-reinforced materials are even stronger

Super strong, lightweight metal could build tomorrow's spacecraft

BAE Systems to provide radar support for U.S. Air Force

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.