Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Improving safety of neutron sources
by Staff Writers
Washington DC (SPX) Jul 29, 2016


File image.

There is a growing interest in the scientific community in a type of high-power neutron source that is created via a process referred to as spallation. This process involves accelerating high-energy protons towards a liquid metal target made of material with a heavy nucleus.

The issue here is that scientists do not always understand the mechanism of residue nuclei production, which can only be identified using spectrometry methods to detect their radioactive emissions.

In a new study examining the radionuclide content of Lead-Bismuth-eutectic (LBE) targets, scientists at the Paul Scherrer Institute Villigen (PSI) found that some of the radionuclides do not necessarily remain dissolved in the irradiated targets. Instead, they can be depleted in the bulk LBE material and accumulate on the target's internal surfaces.

These findings have recently been published in EPJ Plus by Bernadette Hammer-Rotzler affiliated with the PSI and the University of Bern, Switzerland, and colleagues from Switzerland, France and Sweden.

The results improve our understanding of nuclear data related to the radionuclides stemming from high-power targets in spallation neutron sources. They contribute to improving the risk assessment of future high-power spallation neutron beam facilities - including, among others, the risk of erroneous evaluation of radiation dose rates.

In this study, the authors examine the radionuclide content and the spatial distribution of selected radioactive isotopes produced in two Lead-Bismuth-eutectic targets.

The first is called the ISOLDE target and was irradiated with 1-1.4 GeV protons at the eponymous Radioactive Beam Facility at the Particle Physics laboratory CERN, Switzerland. The second, called the MAGPIE target, was irradiated at the PSI with 590 MeV protons.

The team relied on gamma-spectrometry for radionuclide measurement. For radionuclides which cannot be measured directly in the initial samples, the authors developed radiochemical separation procedures.

The team explains how these radionuclides - due to their specific chemical properties - accumulate in enrichment zones located on the walls of structure components or the interface between the liquid metal and the cover gas. They found that the chemical elements of the lanthanide group - including Gadolimuim 148, Lutetium 173 and Prometium 146 - show pronounced accumulation.

Reference: B. Hammer-Rotzler, J. Neuhausen, V. Boutellier, M. Wohlmuther, L. Zanini, J.-C. David, A. Turler, D. Schumann (2016), Distribution and Surface Enrichment of Radionuclides in Lead Bismuth eutectic from Spallation Target, European Physical Journal Plus 131:173 (2016), DOI 10.1140/epjp/i2016-16233-1

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Springer
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Active tracking of astronaut rad-exposures targeted
Paris (ESA) Jul 22, 2016
Radiation is an invisible hazard of spaceflight, but a new monitoring system for ESA astronauts gives a realtime snapshot of their exposure. The results will guide researchers preparing for deep-space missions to come. A key element of the new system launched to orbit with Monday's Falcon 9 launch to the International Space Station, ensuring it is in place for ESA astronaut Thomas Pesquet' ... read more


TECH SPACE
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

TECH SPACE
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

TECH SPACE
Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

TECH SPACE
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

TECH SPACE
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

TECH SPACE
Intelsat 33e arrives at the Spaceport for Arianespace's August launch with Ariane 5

Commission approves acquisition of Arianespace by ASL, subject to conditions

SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

TECH SPACE
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

TECH SPACE
An accelerated pipeline to open materials research

NUS scientists develop plastic flexible magnetic memory device

Scientists grow dandelions to make rubber

Scientists create new thin material that mimics cell membranes




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement