Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Improving energy storage with a cue from nature
by Staff Writers
Washington DC (SPX) Jun 15, 2015


Materials melt faster when the lines of heat spread through the cold material like the branches of a tree - and the melting rate can be increased by allowing the tree architecture to evolve over time, researchers have discovered. The finding could help improve phase change energy storage systems, and could play an role in ensuring a smooth flow of energy from renewable sources. Image courtesy Adrian Bejan/Duke University. For a larger version of this image please go here.

Materials melt faster when the lines of heat spread through the cold material like the branches of a tree - and the melting rate can be steadily increased by allowing the tree architecture to freely evolve over time, researchers have discovered.

The finding could help improve phase change energy storage systems, which store heat by melting materials like wax or salt, and could play an important role in ensuring a smooth flow of energy from renewable sources like the wind and sun. The researchers report the results in the Journal of Applied Physics, from AIP Publishing.

Branching patterns, like the ones the researchers investigated in melting materials, pop up repeatedly in nature, from treetop canopies to spreading river deltas. Similar patterns emerge across seemingly distinct systems because the same basic physical law is driving the evolutionary design, said Adrian Bejan, a professor at Duke University in Durham, North Carolina.

In 1996, Bejan identified the physics behind these branching natural designs with a new principle he called the "Constructal Law," which states that for flow systems - like rivers or trees - to survive, they must evolve over time to provide easier and easier access to the currents that flow through them. In practice this means that a river will shift course as it spreads into the sea to avoid obstructions caused by settling sediment, and a plant will reorient its branches in a constant effort to facilitate nutrient and water flow.

In the following two decades, Bejan and his colleagues have shown how the evolution of various natural and man-made designs, from snowflakes to airplanes (see http://publishing.?aip.?org/?publishing/?journal-highlights/?evolution-airplanes), is explained by the Constructal Law.

"There is organization happening naturally all around us, and the Constructal Law is the physics principle that underpins it," said Bejan. "What's left is to be wise and to rely on the principle to fast-forward the design of technology."

In the new paper Bejan, along with fellow researchers from Duke University and the UniversitA de Toulouse in France, have applied the law to increase the performance of the technology of phase change energy storage.

Phase change energy storage systems take advantage of the fact that materials can store or release large amounts of thermal energy at a steady temperature when they undergo a phase change like melting or freezing. They can be used in buildings to soak up heat during the day and release it again at night, in spacecraft to manage heat flow, and in solar power installations to store excess energy.

"The traditional architecture is to embed a heating and cooling coil in the phase change material, but our research shows that what happens naturally is also the best way to spread the heat into the volume: it is a dendritic structure, like a hand with many fingers," Bejan said. The researchers discovered the overall melting rate increased by allowing the length, number and branching angle of the "fingers" to evolve over time.

A faster melting rate is important because it means that thermal energy is efficiently transferred to the finite amount of phase change material in the system. Maximizing the heat transfer to the phase change material is especially important if the system is used to store energy in a vehicle where any excess weight could slow it down, Bejan added.

In general, the more complex the branching structures, the faster the melting process, but there is a law of diminishing returns. "Imagine building a branching structure, with billions of tiny, tiny fingers touching at the tips. You'd say forget it!" Bejan said. In the end, a human designer will choose to interrupt the sequence of improvements at a certain point because of the costs and time that come with added complexity.

The Constructal Law shows that natural systems are constantly evolving. Technology will follow the same path, Bejan said. "You can imagine that the phase change technology of the day would have a fixed tree-shaped architecture, but it would be overtaken in the following years by even better architecture," Bejan said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
A clear look at an efficient energy converter
Washington DC (SPX) Jun 09, 2015
Xiaochun Qin and colleagues have provided a high-resolution crystal structure of a plant protein supercomplex critical to photosynthesis, shedding new light on how this extremely effective solar energy converter achieves its impressive performance. The photosynthesis of many plants relies upon the large light-harvesting complex I (LHC1), which surrounds photosystem I (PSI) and captures sun ... read more


ENERGY TECH
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

ENERGY TECH
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

ENERGY TECH
How to sail through space on sunbeams - solar satellite leads the way

Robotic Tunneler May Explore Icy Moons

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

ENERGY TECH
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

ENERGY TECH
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

ENERGY TECH
Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

SpaceX achieves pad abort milestone approval for Commercial Crew

NASA issues RFP for New Class of Launch Services

ENERGY TECH
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

ENERGY TECH
Researchers develop ultra-tough fiber that imitates the structure of spider silk

Turning paper industry waste into chemicals

Radar system approved for allies

First US deep space weather satellite reaches final orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.