. 24/7 Space News .
Immunity In Social Amoeba Suggests Ancient Beginnings

When the food supply dries up, solitary Dictyostelium discoideum cells congregate and fuse into a spore-producing tower. A newly discovered hybrid enzyme called Steely2 (shown in cartoon form) forges the basic structure of the chemical signal (DIF-1, shown here as a stick model) that orchestrates this vital step in the life cycle of Dictyostelium: the transformation of omnipotent cells into dedicated spore or stalk cells. Credit: Image by Mike Austin using a photo by Rob Kay
by Staff Writers
Houston (SPX) Aug 09, 2007
Finding an immune system in the social amoeba (Dictyostelium discoideum) is not only surprising but it also may prove a clue as to what is necessary for an organism to become multicellular, said the Baylor College of Medicine researcher who led the research that appears today in the journal Science. Dictyostelium discoideum usually exists as a single-celled organism. However, when stressed by starvation, the single cells band together to form a slug that can move.

Eventually the slug changes to produce cells that perform specific functions - spores and stalks. In this new report, Dr. Adam Kuspa, chair of biochemistry and molecular biology at BCM, and his colleagues describe a new kind of cell they dubbed a "sentinel" cell.

Sentinel cells circulate within the slug, engulfing invading bacteria and sequestering poisons or toxins, eventually eliminating these from the slug. These cells often operate through a particular mechanism in the cells controlled by a Toll/Interleukin-1 Receptor domain protein (TirA), Kuspa and his team found.

This signaling pathway or a very similar one is present in plants and animals, he said. Now it has been identified in amoeba. It has not been found in fungi.

"Amoeba have, in the last 10 years, become appreciated as one of the four main forms of life in the crown group of eukaryotic (multicellular) organisms - plants, animals, fungi and amoeba," said Kuspa. "What allowed them to become multicellular?"

One way to estimate the characteristics of the organism that went before those that were multicellular is to look for characteristics that are present in two, three or all four of these main groups, he said.

"Those were likely present in the progenitor organism," said Kuspa. Because three of the four major groups of organisms have this pathway, "I argue that means that the progenitor of all multicellular organisms had this pathway. Since that organism was not likely multicellular, it must have used it as some kind of signaling to respond to bacteria in the environment."

Looking at it from another point of view, "it's possible that one of the properties of those (crown) organisms that allowed them to become multicellular was the ability to distinguish self from non-self - the hallmark of an immune system," said Kuspa. "The speculation is that a requirement of multicellularity is that you develop systems to recognize pathogens and other non-self cells from yourself."

Kuspa sees two paths for future research in the area. One is to look for evidence of the same immune mechanism and protein in other kinds of amoeba. The other is to look at unicellular organisms to determine if they have this same kind of immune signaling pathway.

"If none of the early diverging organisms that never became multicellular developed this kind of signaling system, it would subtly strengthen our argument," he said.

Others who took part in this work include Drs. Guokai Chen and Olga Zhuchenko, both of BCM.

Community
Email This Article
Comment On This Article

Related Links
Baylor College of Medicine
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


UQ Researchers Discover Some Of The Oldest Forms Of Life
Brisbane, Australia (SPX) Aug 08, 2007
University of Queensland researchers have identified microbial remains in some of the oldest preserved organic matter on Earth, confirmed to be 3.5 billion years-old. The UQ team, led by School of Physical Sciences scientists Dr Miryam Glikson and Associate Professor Sue Golding as well as Associate Professor Lindsay Sly from the School of Molecular and Microbial Sciences, are the first to conclusively confirm the nature and source of the organic material.







  • Historic Phoenix Mars Mission Flies Actel RTAX-S Devices
  • Spaceport America Design Team Selected
  • Making the Transition From Shuttle To Constellation
  • Udall Says House NASA Budget A Step In The Right Direction

  • Dallas Professor Helps Mission To Red Planet
  • NASA Spacecraft Heads For Polar Region Of Mars
  • Extreme Analytical Chemistry Will Help Unravel Mars Mysteries
  • NASA Sends Robotic Lander In Search Of Water And Life On Mars

  • Russian Proton-M Rocket To Launch Japanese Telecoms Satellite
  • ILS to Launch Inmarsat Satellite On Proton Vehicle Next Spring
  • European Automated Space Truck Arrive At South American Spaceport
  • A Double Transfer At The Spaceport For The Next Two Ariane 5 Launchers

  • Satellite Tracking Will Help Answer Questions About Penguin Travels
  • NASA Helps Texas Respond To Most Widespread Flooding In 50 Years
  • Thailand To Launch Environment Satellite In November
  • Mapping Mountains From Space With GOCE

  • Outbound To The Outerplanets At 7 AU
  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol

  • Spitzer Spies Monster Galaxy Pileup
  • Star Caught Smoking Stellar Trash
  • Circumstellar Space Where Chemistry Happens For The Very First Time
  • Japanese And Nasa Satellites Unveil New Type Of Active Galaxy

  • Seeing The Moon Anew
  • NASA Selects Astrophysics Projects For New Science On The Moon
  • Throttling Back To The Moon
  • Moonshine Can Reflect Lunar Composition

  • Car Satellite Navigation Systems Can Be Steered The Wrong Way
  • ShoZu One-Click Image Upload Service To Be Embedded In Samsung Handsets
  • Cell Phones And PDAs Revolutionize How Consumers Find Homes On REALTOR.com
  • T-Mobile Austria Customers Can Now Avoid Becoming Lost With GPS SatNav From TeleNav

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement