. 24/7 Space News .
INTERNET SPACE
Imaging at the speed of light
by Staff Writers
Rochester NY (SPX) Mar 15, 2017


Researchers at the University's Institute of Optics developed a technique that uses lasers to render materials hydrophobic-extremely water repellant. Image courtesy Matthew Mann.

Tiny micro- and nanoscale structures within a material's surface are invisible to the naked eye, but play a big role in determining a material's physical, chemical, and biomedical properties. Over the past few years, Chunlei Guo and his research team at the University of Rochester have found ways to manipulate those structures by irradiating laser pulses to a material's surface. They've altered materials to make them repel water, attract water, and absorb great amounts of light - all without any type of coating.

Now, Guo, Anatoliy Vorobyev, and Ranran Fang, researchers at the University's Institute of Optics, have advanced the research another step forward. They've developed a technique to visualize, for the first time, the complete evolution of micro- and nanoscale structural formation on a material's surface, both during and after the application of a laser pulse.

"After we determined that we could drastically alter the property of a material through creating tiny structures in its surface, the next natural step was to understand how these tiny structures were formed," Guo says. "This is very important because after you understand how they're formed you can better control them."

Having that control will open the way for improvements in all kinds of technologies, including anti-corrosive building materials, energy absorbers, fuel cells, space telescopes, airplane de-icing, medical instrumentation, and sanitation in third world countries.

In a paper published in the Nature journal Light: Science and Applications, the group introduced a scattered-light imaging technique that allows them to record an ultrafast movie of the ways in which laser radiation alters a material's surface. The technique opens a window on the entire process, from the moment a laser hits the material to melting, transient surface fluctuations, and resolidification resulting in permanent micro- and nanostructures.

It currently takes about an hour to pattern a one-inch by one-inch metal sample. Identifying how micro- and nanostructures form has the potential to allow scientists to streamline the creation of these structures - including increasing the speed and efficiency of patterning surfaces.

Creating and altering these small structures makes properties intrinsically part of the material and reduces the need for temporary chemical coatings.

To produce these effects, researchers use a femtosecond laser. This laser produces an ultra-fast pulse with a duration of tens of femtoseconds. (A femtosecond is equal to one quadrillionth of a second.)

Changing the laser's conditions causes changes in the morphological features of the surface structures-- such as their geometry, size, and density - leading the material to exhibit various specific physical properties.

It is difficult to obtain detailed images and movies of events in micro- and nanoscales because they occur during a matter of femtoseconds, picoseconds (one trillionth of a second), and nanoseconds (one billionth of a second).

To put this into perspective: Vorobyev explains that it takes about one second for light to travel from Earth to the moon. However, light travels only about one foot in a nanosecond and approximately 0.3 micrometers in a femtosecond, which is a distance comparable to the diameter of a virus or bacteria.

A typical video camera records a series of images at a rate of five to 30 frames per second. When playing the series of images in real time, human eyes perceive continuous motion rather than a series of separate frames.

So how was Guo's team able to record frames at an interval of femtoseconds, picoseconds, and nanoseconds? They used a technique involving scattered light. During a femtosecond laser pulse, the beam is split in two: one pump beam is aimed at the material target in order to cause micro- and nanostructural change, and the second probe beam acts as a flashbulb to illuminate the process and record it into a CCD camera - a highly-sensitive imaging device with high-resolution capabilities.

"We worked very hard to develop this new technique," Guo says. "With the scattered light pulsing at femtosecond time intervals, we can capture the very small changes at an extremely fast speed. From these images we can clearly see how the structures start to form."

Guo explains that this scattered light visualization technique has applications for capturing any process that takes place on a minute scale. "The technique we developed is not necessarily limited to just studying the surface effects produced in my lab.

The foundation we laid in this work is very important for studying ultrafast and tiny changes on a material surface." This includes studying melting, crystallography, fluid dynamics, and even cell activities.

INTERNET SPACE
China's Wanda aborts bid for Golden Globes producer
Beijing (AFP) March 13, 2017
A $1 billion bid by China's Wanda Group for the operator of the Golden Globe awards has been aborted, the US firm's parent has said, following reports that it was sunk by a Chinese clampdown on overseas investments. The acquisitive Chinese property-to-entertainment group had announced in November it planned to buy Dick Clark Productions, the latest move into Hollywood by a company from China ... read more

Related Links
University of Rochester
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
New Plant Habitat Will Increase Harvest on International Space Station

Space Tourism and Business Looking Up

Indicators show potatoes can grow on Mars

NASA Releases Free Software Catalog

INTERNET SPACE
Space squadron supports record-breaking satellites launch

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

Blue Origin shares video of New Glenn rocket

INTERNET SPACE
Paleolake deposits on Mars might look like sediments in Indonesia

New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

INTERNET SPACE
China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

China to launch 6-8 latest navigation satellites in 2017

China launches experiment satellite "TK-1"

INTERNET SPACE
ISRO Makes More Space for Private Sector Participation in Satellite Making

Kuwait Space Agency - a pipedream or reality

How low can you go? New project to bring satellites nearer to Earth

Teal Group Pegs Value of Space Payloads Through 2036 at Over $250 Billion

INTERNET SPACE
Sandia creates 3-D metasurfaces with optical possibilities

First exact model for diffusion in magnesium alloys

Switching oxygen on and off

Dramatic improvement in surface finishing of 3-D printing

INTERNET SPACE
Kepler Provides Another Peek at Ultra-cool Neighbor

Hunting for giant planet analogs in our own backyard

Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

INTERNET SPACE
Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.