Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ROBO SPACE
Human prejudices sneak into artificial intelligence systems
by Staff Writers
Princeton NJ (SPX) Apr 19, 2017


Researchers found that certain search terms revealed AI bias. Image courtesy Princeton University.

In debates over the future of artificial intelligence, many experts think of the new systems as coldly logical and objectively rational. But in a new study, researchers have demonstrated how machines can be reflections of us, their creators, in potentially problematic ways.

Common machine learning programs, when trained with ordinary human language available online, can acquire cultural biases embedded in the patterns of wording, the researchers found. These biases range from the morally neutral, like a preference for flowers over insects, to the objectionable views of race and gender.

Identifying and addressing possible bias in machine learning will be critically important as we increasingly turn to computers for processing the natural language humans use to communicate, for instance in doing online text searches, image categorization and automated translations.

"Questions about fairness and bias in machine learning are tremendously important for our society," said researcher Arvind Narayanan, an assistant professor of computer science and an affiliated faculty member at the Center for Information Technology Policy (CITP) at Princeton University, as well as an affiliate scholar at Stanford Law School's Center for Internet and Society. "We have a situation where these artificial intelligence systems may be perpetuating historical patterns of bias that we might find socially unacceptable and which we might be trying to move away from."

The paper, "Semantics derived automatically from language corpora contain human-like biases," published April 14 in Science. Its lead author is Aylin Caliskan, a postdoctoral research associate and a CITP fellow at Princeton; Joanna Bryson, a reader at University of Bath, and CITP affiliate, is a coauthor.

As a touchstone for documented human biases, the study turned to the Implicit Association Test, used in numerous social psychology studies since its development at the University of Washington in the late 1990s. The test measures response times (in milliseconds) by human subjects asked to pair word concepts displayed on a computer screen. Response times are far shorter, the Implicit Association Test has repeatedly shown, when subjects are asked to pair two concepts they find similar, versus two concepts they find dissimilar.

Take flower types, like "rose" and "daisy," and insects like "ant" and "moth." These words can be paired with pleasant concepts, like "caress" and "love," or unpleasant notions, like "filth" and "ugly." People more quickly associate the flower words with pleasant concepts, and the insect terms with unpleasant ideas.

The Princeton team devised an experiment with a program where it essentially functioned like a machine learning version of the Implicit Association Test. Called GloVe, and developed by Stanford University researchers, the popular, open-source program is of the sort that a startup machine learning company might use at the heart of its product. The GloVe algorithm can represent the co-occurrence statistics of words in, say, a 10-word window of text. Words that often appear near one another have a stronger association than those words that seldom do.

The Stanford researchers turned GloVe loose on a huge trawl of contents from the World Wide Web, containing 840 billion words. Within this large sample of written human culture, Narayanan and colleagues then examined sets of so-called target words, like "programmer, engineer, scientist" and "nurse, teacher, librarian" alongside two sets of attribute words, such as "man, male" and "woman, female," looking for evidence of the kinds of biases humans can unwittingly possess.

In the results, innocent, inoffensive biases, like for flowers over bugs, showed up, but so did examples along lines of gender and race. As it turned out, the Princeton machine learning experiment managed to replicate the broad substantiations of bias found in select Implicit Association Test studies over the years that have relied on live, human subjects.

For instance, the machine learning program associated female names more with familial attribute words, like "parents" and "wedding," than male names. In turn, male names had stronger associations with career attributes, like "professional" and "salary." Of course, results such as these are often just objective reflections of the true, unequal distributions of occupation types with respect to gender--like how 77 percent of computer programmers are male, according to the U.S. Bureau of Labor Statistics.

Yet this correctly distinguished bias about occupations can end up having pernicious, sexist effects. An example: when foreign languages are naively processed by machine learning programs, leading to gender-stereotyped sentences. The Turkish language uses a gender-neutral, third person pronoun, "o." Plugged into the well-known, online translation service Google Translate, however, the Turkish sentences "o bir doktor" and "o bir hem?ire" with this gender-neutral pronoun are translated into English as "he is a doctor" and "she is a nurse."

"This paper reiterates the important point that machine learning methods are not 'objective' or 'unbiased' just because they rely on mathematics and algorithms," said Hanna Wallach, a senior researcher at Microsoft Research New York City, who was not involved in the study. "Rather, as long as they are trained using data from society and as long as society exhibits biases, these methods will likely reproduce these biases."

Another objectionable example harkens back to a well-known 2004 paper by Marianne Bertrand of the University of Chicago Booth School of Business and Sendhil Mullainathan of Harvard University. The economists sent out close to 5,000 identical resumes to 1,300 job advertisements, changing only the applicants' names to be either traditionally European American or African American. The former group was 50 percent more likely to be offered an interview than the latter. In an apparent corroboration of this bias, the new Princeton study demonstrated that a set of African American names had more unpleasantness associations than a European American set.

Computer programmers might hope to prevent cultural stereotype perpetuation through the development of explicit, mathematics-based instructions for the machine learning programs underlying AI systems. Not unlike how parents and mentors try to instill concepts of fairness and equality in children and students, coders could endeavor to make machines reflect the better angels of human nature.

"The biases that we studied in the paper are easy to overlook when designers are creating systems," said Narayanan. "The biases and stereotypes in our society reflected in our language are complex and longstanding. Rather than trying to sanitize or eliminate them, we should treat biases as part of the language and establish an explicit way in machine learning of determining what we consider acceptable and unacceptable."

ROBO SPACE
Brane Craft Proposal Awarded Phase 2 by NASA
El Segundo CA (SPX) Apr 12, 2017
NASA has awarded Dr. Siegfried Janson of The Aerospace Corporation (Aerospace) with the 2017 NASA Innovative Advanced Concepts (NIAC) Phase II grant award, worth approximately $500,000, for further development of his Brane Craft flat spacecraft proposal. This award is one of 22 early-stage technical proposals that will transform the future of human and robotic exploration missions, introdu ... read more

Related Links
Princeton University, Engineering School
All about the robots on Earth and beyond!

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Orbital ATK launches cargo to space station

Russian, American two-man crew reaches ISS

Soyuz-FG rocket to be installed at Baikonur on April 17

NASA Engages the Next Generation with HUNCH

ROBO SPACE
45th SW supports Atlas V OA-7 launch

Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

Dream Chaser to use Europe's next-generation docking system

ROBO SPACE
Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

Mars Rover Opportunity Leaves 'Tribulation'

NASA's MAVEN reveals Mars has metal in its atmosphere

ROBO SPACE
Ticking Boxes with Tianzhou

China launches first cargo spacecraft Tianzhou-1

Tianzhou-1 space truck soars into orbit

Yuanwang fleet to carry out 19 space tracking tasks in 2017

ROBO SPACE
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

ROBO SPACE
Computers create recipe for two new magnetic materials

4-D printing gets simpler and faster

Space debris problem getting worse, say scientists

France's Melenchon returns with campaigning hologram

ROBO SPACE
Evidence for Habitable Region Within Saturn's Moon Enceladus

The earliest animals were marine jellies

Distantly related fish find same evolutionary solution to dark water

Potentially Habitable Super-Earth is a Prime Target for Atmospheric Study

ROBO SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement