. 24/7 Space News .
TIME AND SPACE
Hubble spies Big Bang frontiers
by Staff Writers
Paris (ESA) Oct 23, 2015


This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACS J0416.1 2403. This is one of six being studied by the Hubble Frontier Fields programme, which together have produced the deepest images of gravitational lensing ever made. Image courtesy NASA, ESA and the HST Frontier Fields team (STScI). For a larger version of this image please go here.

Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the Universe. Some of these galaxies formed just 600 million years after the Big Bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined, for the first time with some confidence, that these small galaxies were vital to creating the Universe that we see today.

An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Federale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the Big Bang [1] - one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young.

Although impressive, the number of galaxies found at this early epoch is not the team's only remarkable breakthrough, as Johan Richard from the Observatoire de Lyon, France, points out, "The faintest galaxies detected in these Hubble observations are fainter than any other yet uncovered in the deepest Hubble observations."

By looking at the light coming from the galaxies the team discovered that the accumulated light emitted by these galaxies could have played a major role in one of the most mysterious periods of the Universe's early history - the epoch of reionisation. Reionisation started when the thick fog of hydrogen gas that cloaked the early Universe began to clear. Ultraviolet light was now able to travel over larger distances without being blocked and the Universe became transparent to ultraviolet light [2].

By observing the ultraviolet light from the galaxies found in this study the astronomers were able to calculate whether these were in fact some of the galaxies involved in the process. The team determined, for the first time with some confidence, that the smallest and most abundant of the galaxies in the study could be the major actors in keeping the Universe transparent. By doing so, they have established that the epoch of reionisation - which ends at the point when the Universe is fully transparent - came to a close about 700 million years after the Big Bang [3].

Lead author Atek explained, "If we took into account only the contributions from bright and massive galaxies, we found that these were insufficient to reionise the Universe. We also needed to add in the contribution of a more abundant population of faint dwarf galaxies."

To make these discoveries, the team utilised the deepest images of gravitational lensing made so far in three galaxy clusters, which were taken as part of the Hubble Frontier Fields (http://frontierfields.org/) programme [4]. These clusters generate immense gravitational fields capable of magnifying the light from the faint galaxies that lie far behind the clusters themselves. This makes it possible to search for, and study, the first generation of galaxies in the Universe.

Jean-Paul Kneib, co-author of the study from the Ecole Polytechnique Federale de Lausanne, Switzerland, explains, "Clusters in the Frontier Fields act as powerful natural telescopes and unveil these faint dwarf galaxies that would otherwise be invisible."

Co-author of the study Mathilde Jauzac, from Durham University, UK, and the University of KwaZulu-Natal, South Africa, remarks on the significance of the discovery and Hubble's role in it,"Hubble remains unrivalled in its ability to observe the most distant galaxies. The sheer depth of the Hubble Frontier Field data guarantees a very precise understanding of the cluster magnification effect, allowing us to make discoveries like these."

These results highlight the impressive possibilities of the Frontier Fields programme with more galaxies, at even earlier time, likely to be revealed when Hubble peers at three more of these galaxy clusters in the near future.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Hubble at ESA
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Best precision yet for neutrino measurements at Daya Bay
Berkeley CA (SPX) Sep 13, 2015
In the Daya Bay region of China, about 55 kilometers northeast of Hong Kong, a research project is underway to study ghostlike, elusive particles called neutrinos. Today, the international Daya Bay Collaboration announces new findings on the measurements of neutrinos, paving the way forward for further neutrino research, and confirming that the Daya Bay neutrino experiment continues to be one to ... read more


TIME AND SPACE
Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

TIME AND SPACE
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

TIME AND SPACE
Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

TIME AND SPACE
China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

TIME AND SPACE
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

TIME AND SPACE
ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

TIME AND SPACE
Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

TIME AND SPACE
U.S. Air Force long-range radar systems reach full operational capability

A 'hot' new development for ultracold magnetic sensors

Mother-of-pearl's genesis identified in mineral's transformation

Exciting breakthrough in 2-D lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.