. 24/7 Space News .
Hubble And Einstein "Weigh" Nearest White Dwarf Star

This Hubble Space Telescope image shows Sirius A, the brightest star in our nighttime sky, along with its faint, tiny stellar companion, Sirius B. Astronomers overexposed the image of Sirius A [at centre] so that the dim Sirius B [tiny dot at lower left] could be seen. The cross-shaped diffraction spikes and concentric rings around Sirius A, and the small ring around Sirius B, are artifacts produced within the telescope's imaging system. The two stars revolve around each other every 50 years. Sirius A, only 8.6 light-years from Earth, is the fifth closest star system known.

This image was taken 15 Oct., 2003, with Hubble's Wide Field Planetary Camera 2. Based on detailed measurements of the position of Sirius B in this image, astronomers were then able to point the STIS instrument exactly on the white dwarf and make the measurements to determine its gravitational redshift and mass. Credit: NASA, ESA, H. Bond (STScI), and M. Barstow (University of Leicester.


Baltimore MD (SPX) Dec 14, 2005
Astronomers have used NASA's Hubble Space Telescope to get the most precise measurement ever made of a tiny shift in the light from Earth's nearest white dwarf star and, using Einstein's theory of general relativity, accurately determined the incredibly dense star's mass.

The white dwarf star, Sirius B, is a companion to Sirius A, the brightest star in the night sky. The binary star system is only 8.6 light years from Earth. (A light year is the distance light travels in one year, roughly six trillion miles.) But ground-based astronomers have found it impossible to precisely measure light from Sirius B because it is swamped by the glare of the ten-thousand times brighter Sirius A.

Jay B. Holberg and Ivan Hubeny of The University of Arizona are members of the team led by Martin Barstow of the University of Leicester, U.K., who used the Hubble to get sharp views of just the white dwarf star, unpolluted by light from Sirius A. White dwarf stars are the dying remnant cores of stars similar to the sun. Our sun will eventually become a white dwarf.

Applying Einstein's general relativity theory, the team determined that Sirius B packs 98 percent of the mass of our sun within its 7,500-mile diameter (12,000 kilometers), or within a volume slightly smaller than Earth.

Albert Einstein proposed the general relativity theory in 1915. It says that the gravity of any mass, such as a planet or star, has the effect of warping the space and time around it.

Einstein predicted that astronomers would observe light losing a fraction of its energy because of a massive star's intense gravitational field. They would see light shifted to longer, redder wavelengths. The phenomenon is called "gravitational redshift" effect.

Sirius B has an intense gravitational field that warps space and slows time far more dramatically than we experience on Earth. If we humans were to stand on Sirius B, we'd be crushed by space warped by gravity. A 150-pound person would weigh 50 million pounds. (But on the upside, if we Earthlings could survive, we wouldn't age as quickly.)

"The nature of the ashes of these dead stars give us important clues about the lives and deaths of stars like our own sun," Barstow said. "The nuclear waste of carbon and oxygen produced in the process are essential elements for life and are eventually recycled into interstellar space to form new stars, planets and, possibly, living beings."

"Sirius' strange companion (Sirius B) has played a key role in the development of physics and astrophysics since 1915, when it first alerted astronomers to the existence of enormously dense states of matter," Holberg added.

Astronomers first measured the gravitational redshift in light from Sirius B in 1925, helping confirm Einstein's general relativity theory. As a young graduate student at Cambridge University in the early 1930s, Subramanyan Chandrasekhar used Einstein's theory of special relativity and quantum mechanics to show how white dwarf stars could exist.

He also deduced that no white dwarf could ever have more mass than 1.4 solar masses. Chandrasekhar's work was dismissed until the 1960s, then recognized with the Nobel Prize in physics in 1983.

Related Links
The University of Arizona
University of Leicester
NASA's Hubble Space Telescope
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Physicists Store And Retrieve Single Photons Between Remote Memories
Atlanta GA (SPX) Dec 12, 2005
A series of publications in the journal Nature highlights the race among competing research groups toward the long-anticipated goal of quantum networking.

---------------------------------------------------------
New from Telescopes.com!

It's new. And it's downright terrific!

Celestron's CPC Schmidt-Cassegrain telescope is the scope you've been waiting for! It offers new alignment technology, advanced engineering, and bold new design at a new, low price!

In fact, Celestron's Professional Computerized (CPC) scope with revolutionary SkyAlign Alignment Technology redefines everything that amateur astronomers are looking for. It offers quick and simple alignment, GPS technology, unsurpassed optical quality, ease of use, advanced ergonomics, enhanced computerization and, most important, affordability.

Want to view M-31 tonight? One button takes you there!

Shop for telescopes online at Telescopes.com! today!
------------------------------------------------------------







  • Virgin Astronauts To Blast Off From New Mexico
  • Arianespace Thanks ESA Member States For Setting New Space Milestones
  • Europe Keen To Join Russia In New Spaceship Project: Officials
  • ARTES 11 Approved By ESA On The Basis Of OHB LUX Specifications

  • Spirit Studying Algonquin
  • Opportunity Celebrates One Mars Year
  • The Mars Journal Publishes Its First Papers
  • UCSB Researcher To Design Instrument To Test Soil On Mars

  • MT Aerospace Signs CNES Contract For Soyuz Ground Facilities In Kourou
  • An Interview With The President Of RSC Energia
  • Sea Launch Awarded Spaceway 3 Contract By Hughes Network Systems
  • Arianespace Set To Commercialise Soyuz

  • Unprecedented View Of Upper Atmosphere Created By NASA Scientists
  • Space Radar Advances And Application
  • Aerosonde Successfully Completes Weatherscout GUAM Trials
  • Landsat 5 Back-Up Solar Array Drive Having Technical Problems

  • Mysterious Deep-Space Object Raises Questions On Origin Of Solar System
  • NASA Prepares To Launch First Probe To The Kuiper Belt
  • A Historic Space Mission To the Third Zone Nears Launch
  • New Horizons Launch Preparations Move Ahead

  • Spitzer Exposes Hundreds Of New Star Clusters In Dust-Drenched Plane Of Milky Way
  • Galaxy Collisions Dominate The Local Universe
  • ESA's Integral and XMM-Newton missions extended
  • Cornell Astronomers Investigate Cosmic Forces That Produce New Galaxies

  • Moon Storms
  • Chinese Lunar Land Sale A Great Idea But Illegal Says Government
  • Russian Technologies Can Put Cosmonauts On Moon
  • India Awaits Approval For Chandrayan Lunar Mission

  • GPS Systems Getting Smaller
  • First Member Of Galileo Satellite Family To Be Launched 26 December
  • China And Europe Push Forward Galileo Cooperation
  • Guangzhou Unveils New Satellite First-Aid Facilities

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement