. 24/7 Space News .
SOLAR SCIENCE
How scientists used NASA data to predict the corona of the Aug. 21 Total Solar Eclipse
by Staff Writers
Greenbelt MD (SPX) Oct 25, 2017


Predictive Science, Inc. developed a numerical model that simulated what the corona would look like during the Aug. 21, 2017 total solar eclipse.

When the total solar eclipse swept across the United States on Aug. 21, 2017, NASA satellites captured a diverse set of images from space. But days before the eclipse, some NASA satellites also enabled scientists to predict what the corona - the Sun's outer atmosphere - would look like during the eclipse, from the ground. In addition to offering a case study to test our predictive abilities, the predictions also enabled some eclipse scientists to choose their study targets in advance.

Predictive Science, Inc., San Diego, Calif. - a private computational physics research company supported by NASA, the National Science Foundation and the Air Force Office of Scientific Research - used data from NASA's Solar Dynamics Observatory, or SDO to develop an improved numerical model that simulated what the corona would look like during the total eclipse. Their model uses observations of magnetic fields on the Sun's surface and requires a wealth of supercomputing resources to predict how the magnetic field shapes the corona over time.

As the corona and solar material spread outward from the Sun, they can manifest themselves as disturbances in near-Earth space, known as space weather. "Space weather models must be able to characterize the structure of the corona in order to improve forecasts of the path and possible impacts of these events," Predictive Science president and scientist Jon Linker said.

One key tool are computer models that simulate events on the Sun before they even happen. This comparing of models and observations is a core aspect of heliophysics - the field of science dedicated to understanding the Sun and its dynamic influence throughout the solar system. Without the ability to measure the corona directly, heliophysicists test their theories by using complex computer simulations.

Eclipses offer a unique opportunity for scientists to test such models. During the total eclipse, the Moon completely obscured the Sun's bright face, revealing the innermost part of the corona - the region where solar eruptions such as coronal mass ejections originate, but is difficult to observe under ordinary circumstances. By comparing their predictions to the observations gathered during the eclipse itself, researchers can assess and improve the performance of their coronal models.

The model the Predictive Science researchers used for their final prediction of the August 2017 eclipse was their most complex yet. In addition to SDO's maps of the Sun's magnetic field, it also utilized SDO observations of filaments - serpentine structures on the Sun's surface comprised of cool, dense solar material.

Greater complexity demands more computing hours, and each simulation required thousands of processers and took about two days of real time to complete. The research group ran their model on several supercomputers including facilities at the Texas Advanced Computer Center in Austin, Texas; the San Diego Supercomputer Center in California; and the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA's Ames Research Center in Silicon Valley, California.

"Based on a very preliminary comparison, it looks like the model did very well in capturing features of the large-scale corona," Linker said. In its increased complexity, the model demonstrates that even the Sun's fine magnetic structures are intimately related to the vast structure of the corona.

While scientists were running their models, NASA's own Solar and Terrestrial Relations Observatory, or STEREO-A spacecraft, was also able to peer into the future and provide clues as to what the corona would look like the day of the eclipse.

As the eclipse drew closer, due to STEREO-A's position behind the Sun and the particular rotation rates of the Sun and Earth, STEREO-A's view of the corona on Aug. 12, 2017, was virtually the same those within the path of totality would see nine days later on Aug. 21. That is, STEREO-A's vantage point is roughly nine days in advance of Earth's.

STEREO's key instruments include a pair of coronagraphs - telescopes that use a metal disk called an occulting disk to study the corona. Just like a total eclipse, the occulting disk blocks the Sun's bright light, making it possible to discern the surrounding corona.

Coronagraph images from Aug. 12 and 21 show great similarity; both feature a dominant three-streamer shape. Here, the STEREO image is compared to an image from the joint ESA/NASA Solar and Heliospheric Observatory, or SOHO, which was positioned to share Earth's view of the corona on Aug. 21. The slight difference in the location of the streamers is due to the fact that STEREO-A and SOHO view the Sun from slightly different angles.

"The small difference between the Aug. 12 and Aug. 21 images show the Sun's atmosphere evolves very slowly - as we expect it to, in its declining phase toward solar minimum," said Angelos Vourlidas, a STEREO science team member and heliophysicist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. "The Sun is slowly going to sleep - but not quietly, as the recent spate of solar activity reminded us!"

Solar minimum is the period of lower solar activity in the Sun's natural approximately 11-year cycle. In times of greater solar activity, the dynamic corona could have evolved too quickly to make such a prediction useful. But in these times nearing solar minimum, both Predictive Science and STEREO's eclipse predictions offered an opportunity for researchers to improve models and our understanding of the Sun's current activity.

SOLAR SCIENCE
NASA's Lunar mission captures solar eclipse as seen from the moon
Greenbelt MD (SPX) Aug 30, 2017
During the total solar eclipse on Aug. 21, NASA's Lunar Reconnaissance Orbiter, or LRO, captured an image of the Moon's shadow over a large region of the United States, centered just north of Nashville, Tennessee. As LRO crossed the lunar south pole heading north at 3,579 mph (1,600 meters per second), the shadow of the Moon was racing across the United States at 1,500 mph (670 meters per ... read more

Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Spacewalkers fix robotic arm in time to grab next cargo ship

NASA develops and tests new housing for in-orbit science payloads

Plants and psychological well-being in space

Russia's space agency says glitch in manned Soyuz landing

SOLAR SCIENCE
NASA awards launch contracts for Landsat 9 and Sentinel-6A

It's a success! Blue Origin conducts first hot-fire test of BE-4 engine

ESA role in Europe's first all-electric telecom satellite

Lockheed Martin Launches Second Cycle of 'Girls' Rocketry Challenge' in Japan

SOLAR SCIENCE
Mars Rover Mission Progresses Toward Resumed Drilling

Mine craft for Mars

Opportunity spends the week imaging Perseverance Valley

Solar eruptions could electrify Martian moons

SOLAR SCIENCE
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

SOLAR SCIENCE
Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

SOLAR SCIENCE
These headsets are made for walking over Mars

Xenesis Licenses Cutting Edge IP from NASA/JPL

Dutch open 'world's first 3D-printed bridge'

Using space to study ultra-cold materials

SOLAR SCIENCE
From Comets Come Planets

New NASA study improves search for habitable worlds

A star that devoured its own planets

Astronomers find potential solution into how planets form

SOLAR SCIENCE
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.