Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
How natural channel proteins move in artificial membranes
by Staff Writers
Basel, Switzerland (SPX) Jun 10, 2015


Natural channel proteins move sideways in a thick artificial membrane that condenses around the channel proteins. Image courtesy reprinted with permission from ACS. For a larger version of this image please go here.

Natural channel proteins are integrated into artificial membranes to facilitate the transport of ions and molecules. Researchers at the University of Basel have now been able to measure the movement of these channel proteins for the first time.

They move up to ten times slower than in their natural environment, namely the cell membrane. As reported in academic journal "Nano Letters", the results may prove useful to the ongoing development of new applications such as nanoreactors and artificial organelles.

The membranes of the cells in our bodies are only approximately 4 to 5 nanometers thick and consist of a complex mixture of lipids and specific membrane proteins, which also include channel proteins. This kind of cell membrane can be described as a fluid 2-D solution, in which the components are able to move laterally. These movements within the membrane are dependent on the flexibility and fluidity of the components and ultimately determine the functionality of the membrane.

Dynamic channel proteins
Chemists at the National Center of Competence in Research (NCCR) Molecular Systems Engineering working under Professor Wolfgang Meier and Professor Cornelia Palivan from the University of Basel have now integrated three different channel proteins into artificial membranes of 9 to 13 nanometers in thickness and have measured their movements for the first time.

The researchers began by creating large membrane models with embedded and dyed channel proteins; they then put them on a glass surface and measured them using a single-molecule measuring method known as fluorescence correlation spectroscopy. All three channel proteins were able to move freely within the membranes of various thicknesses - this took up to ten times longer than in the lipid bilayers of their natural environment.

Flexibility is a necessity
In thicker membranes, the building blocks of the membrane (polymers) must be able to condense around the channel proteins in order to alter their fixed size. To do so, the membrane building blocks have to be sufficiently flexible.

This had already been described in theory. The researchers at the University of Basel have now been able to measure this in a practical experiment for the first time, demonstrating that the thicker the membrane, the slower the movement of the channel protein is in comparison to the movement of the actual polymers that form the membrane.

"This phenomenon is effectively a local decrease in fluidity caused by condensation of the polymers," explains lead author Fabian Itel.

In essence, however, the behavior of the channel proteins in the artificial membranes is comparable to that in their natural environment, the lipid bilayer, with the time scale of the movements being approximately ten times lower. The research project received funding from the Swiss National Science Foundation and the NCCR Molecular Systems Engineering.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Basel
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Spinning a new version of silk
Boston MA (SPX) Jun 05, 2015
After years of research decoding the complex structure and production of spider silk, researchers have now succeeded in producing samples of this exceptionally strong and resilient material in the laboratory. The new development could lead to a variety of biomedical materials - from sutures to scaffolding for organ replacements - made from synthesized silk with properties specifically tuned for ... read more


TECH SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TECH SPACE
Supersonic NASA parachute torn to pieces in latest test

Martian glass: Window into possible past life?

Rover Ready for Solar Conjunction and Period of Curtailed Operations

NASA Spacecraft Detects Impact Glass on Surface of Mars

TECH SPACE
Spacecraft glitch shifts orbiting ISS: Russia

XCOR Selects Matrix Composites to Develop Lynx Chines

NASA's LDSD Project Completes Second Experimental Test Flight

ESA astronaut Samantha Cristoforetti returning home

TECH SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TECH SPACE
Space station back on track after mystery Soyuz glitch

Russia aims for launch of next manned flight to ISS in July

ISS Adjusts Orbit to Evade Space Junk

Russian Space Agency Reschedules 6 Flights to ISS for 2015

TECH SPACE
SpaceX achieves pad abort milestone approval for Commercial Crew

MSG-4 and S1 C4 make initial contact with Ariane 5 launcher hardware

Angara to launch first manned rocket from Vostochny in 2023

Airbus developing reusable space rocket launcher

TECH SPACE
Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

Astronomers discover a young solar system around a nearby star

Astronomers Discover a Young Solar System Around a Nearby Star

Circular orbits identified for small exoplanets

TECH SPACE
How natural channel proteins move in artificial membranes

Researchers simulate behavior of 'active matter'

An inexpensive rival to graphene aerogels

Magnetic nanoparticles could offer alternative to rare Earth magnets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.