. 24/7 Space News .
EARLY EARTH
How methane-making microbes kept the early Earth warm
by Staff Writers
Atlanta GA (SPX) May 30, 2017


Marcus Bray (left), a biology Ph.D. candidate and Jennifer Glass, assistant professor in the Georgia Institute of Technology's School of Earth and Atmospheric Sciences, are shown in the laboratory where tiny incubators simulated early Earth conditions. Image courtesy Rob Felt, Georgia Tech.

For much of its first two billion years, Earth was a very different place: oxygen was scarce, microbial life ruled, and the sun was significantly dimmer than it is today. Yet the rock record shows that vast seas covered much of the early Earth under the faint young sun.

Scientists have long debated what kept those seas from freezing. A popular theory is that potent gases such as methane - with many times more warming power than carbon dioxide - created a thicker greenhouse atmosphere than required to keep water liquid today.

In the absence of oxygen, iron built up in ancient oceans. Under the right chemical and biological processes, this iron rusted out of seawater and cycled many times through a complex loop, or "ferrous wheel." Some microbes could "breathe" this rust in order to outcompete others, such as those that made methane. When rust was plentiful, an "iron curtain" may have suppressed methane emissions.

"The ancestors of modern methane-making and rust-breathing microbes may have long battled for dominance in habitats largely governed by iron chemistry," said Marcus Bray, a biology Ph.D. candidate in the laboratory of Jennifer Glass, assistant professor in the Georgia Institute of Technology's School of Earth and Atmospheric Sciences and principal investigator of the study funded by NASA's Exobiology and Evolutionary Biology Program. The research was reported in the journal Geobiology on April 17, 2017.

Using mud pulled from the bottom of a tropical lake, researchers at Georgia Tech gained a new grasp of how ancient microbes made methane despite this "iron curtain."

Collaborator Sean Crowe, an assistant professor at the University of British Columbia, collected mud from the depths of Indonesia's Lake Matano, an anoxic iron-rich ecosystem that uniquely mimics early oceans.

Bray placed the mud into tiny incubators simulating early Earth conditions, and tracked microbial diversity and methane emissions over a period of 500 days. Minimal methane was formed when rust was added; without rust, microbes kept making methane through multiple dilutions.

Extrapolating these findings to the past, the team concluded that methane production could have persisted in rust-free patches of ancient seas. Unlike the situation in today's well-aerated oceans, where most natural gas produced on the seafloor is consumed before it can reach the surface, most of this ancient methane would have escaped to the atmosphere to trap heat from the early sun.

Bray M.S., J. Wu, B.C. Reed, C.B. Kretz, K.M. Belli, R.L. Simister, C. Henny, F.J. Stewart, T.J. DiChristina, J.A. Brandes, D.A. Fowle, S.A. Crowe, J.B. Glass. 2017. Shifting microbial communities sustain multi-year iron reduction and methanogenesis in ferruginous sediment incubations. (Geobiology 2017).

EARLY EARTH
Early dinosaur 'cousin' discovered - and it's not like scientists thought it'd be
Chicago IL (SPX) Apr 17, 2017
If you asked paleontologists what the earliest ancestors of dinosaurs were like, most would put their money on the animals resembling miniature dinosaurs: small, meat-eating animals that walked on two legs. But in a paper published in Nature scientists describe the earliest known dinosaur relative: a six-foot-long lizard-like carnivore called Teleocrater rhadinus. "Teleocrater has unexpect ... read more

Related Links
Georgia Institute of Technology
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

Astronauts set to return after marathon ISS mission

NASA honors Kennedy's space vision on 100th birthday

Conch shells may inspire better helmets, body armor

EARLY EARTH
Lightning strike postpones SpaceX launch until Saturday

Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Colossal rocket-launching plane rolls toward testing

EARLY EARTH
Halos discovered on Mars widen time frame for potential life

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Curiosity Peels Back Layers on Ancient Martian Lake

EARLY EARTH
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

EARLY EARTH
New Horizons for Alexander Gerst

Propose a course idea for the CU space minor

Government space program spending reaches 62B dollars in 2016

Leading Global Air And Space Law Group Joins Reed Smith

EARLY EARTH
High pressure key to lighter, stronger metal alloys, Stanford scientists find

Northrop Grumman receives AESA radar contract

Space junk could destroy satellites, hurt economies

New method allows real-time monitoring of irradiated materials

EARLY EARTH
Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Giant Ringed Planet Likely Cause of Mysterious Eclipses

Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

EARLY EARTH
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.