Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
How ionic: Scaffolding is in charge of calcium carbonate crystals
by Staff Writers
Richland WA (SPX) Jan 29, 2015


Large charged molecules (red) lure in calcium ions (blue), which position carbonate (yellow and red) and form ACC (white ball). Image courtesy PNNL. For a larger version of this image please go here.

Nature packs away carbon in chalk, shells and rocks made by marine organisms that crystallize calcium carbonate. Now, research suggests that the soft, organic scaffolds in which such crystals form guide crystallization by soaking up the calcium like an "ion sponge," according to new work in Nature Materials. Understanding the process better may help researchers develop advanced materials for energy and environmental uses, such as for removing carbon dioxide from the atmosphere.

Using a powerful microscope that lets researchers see the formation of crystals in real time, a team led by the Department of Energy's Pacific Northwest National Laboratory found that negatively charged molecules -- such as carbohydrates found in the shells of mollusks -- control where, when, and how calcium carbonate forms.

These large macromolecules do so by directing where calcium ions bind in the scaffold. The negative charge on the macromolecules attract the positively charged calcium ions, placing them in the scaffold through so-called ion binding. Rather than these chemical interactions, researchers had previously thought the scaffold guides crystallization by providing the best energetic environment for the crystal.

"This whole story is different from what we had believed to be the case," said lead researcher Jim De Yoreo at PNNL. "Ion binding defines a completely different mechanism for controlling crystallization than does making a perfect interface between the crystal and the scaffold. And it is one that should provide us with considerable control."

Missing Piece
Previous work showed that calcium carbonate takes multiple routes to becoming a mineral. All of the common crystal forms, including calcite (found in limestone), aragonite (found in mother-of-pearl), and vaterite (found in gallstones), crystallized from solution, often at the same time. But in some cases, droplet-like particles of uncrystallized material known as amorphous calcium carbonate, or ACC, formed first and then transformed into either aragonite or vaterite.

Those experiments, however, lacked a crucial element found in the biological world, where minerals form within an organic scaffold. For example, pearls develop in the presence of negatively charged carbohydrates and proteins from the oyster.

In addition, biologically built minerals often start out as ACC. De Yoreo and his colleagues wondered what role macromolecules -- carbs, proteins or other large molecules with a negative charge -- play.

To find out, De Yoreo and team allowed calcium carbonate to mineralize under a specialized transmission electron microscope at the Molecular Foundry, a DOE Office of Science User Facility at DOE's Lawrence Berkeley National Laboratory. Collaborators also hailed from Eindhoven University of Technology in The Netherlands.

But this time they added a negatively charged macromolecule, a polymer called polystyrene sulfonate. Without the polymer, they saw crystals of vaterite and a little calcite forming randomly under the microscope. With the polymer, however, ACC always appeared first and vaterite formed much later.

Because the polymer interfered with vaterite formation, the team looked a little closer at what the polymer was doing. When they mixed the polymer with the calcium first before introducing carbonate, they found globules of the polymer forming in the solution. They determined that the polymer had soaked up more than half of the calcium to form the globules.

When the researchers then added carbonate to the experimental chamber, ACC formed instead and it only appeared within these globules. The ACC grew in size until the supply of calcium ran out. The researchers concluded that calcium binding to the polymer is the key to forming the ACC and controlling where it forms.

Mineral Motivation
The team realized that controlling crystallization by attracting calcium ions to the macromolecules was not the way researchers had long thought it happened.

There are two main ways that calcium carbonate molecules might be persuaded to come together to form a mineral. One is by providing an environment where the atoms assemble in the crystal in the least energetic way possible, sort of like organizing a classroom full of schoolchildren by having them sit in seats arranged neatly in rows side-by-side in the corner of the room.

Another is via chemical binding -- negatively or positively charged atoms or molecules called ions attract one another, sort of like waving popsicles in front of those kids to gather them in one spot.

Researchers had long suspected that organic scaffolds caused calcium carbonate to mineralize and find its most stable form, calcite, by creating low energy surfaces where the ions could easily arrange themselves in rows side-by-side. In fact, scientists had seen this previously with highly organized films of organic molecules.

But in this study, the polymer, like the popsicle, pulls in the calcium before minerals can form and turns it into ACC. This showed the researchers that ion binding can completely overwhelm any lower-energy advantage that crystallization on or outside of the polymer might confer.

"This is definitely another means of controlling nucleation," said De Yoreo. "Carbonate ions follow the calcium into the globules. They don't crystallize outside the globules because there's not enough calcium there to make a mineral. It's like bank robbers out for a heist. They go where the money is."

"This work opens new avenues for the investigation of biomineralization. Can we extend these experiments beyond the simple polymers we used here? To what extent can we rebuild parts of the biological machinery inside the microscope?" said co-author Prof. Nico Sommerdijk of Eindhoven University of Technology.

"Answering these questions may eventually allow us to understand the biological mineral formation and apply its principles to design green, sustainable routes for the production of advanced materials."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Pacific Northwest National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Scientists 'bend' elastic waves with new metamaterials
Columbia MO (SPX) Jan 28, 2015
Sound waves passing through the air, objects that break a body of water and cause ripples, or shockwaves from earthquakes all are considered "elastic" waves. These waves travel at the surface or through a material without causing any permanent changes to the substance's makeup. Now, engineering researchers at the University of Missouri have developed a material that has the ability to cont ... read more


TECH SPACE
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

TECH SPACE
Gully patterns document Martian climate cycles

The two faces of Mars

Several Drives This Week Put Opportunity Near Marathon Distance

Helicopter Could be 'Scout' for Mars Rovers

TECH SPACE
NASA, Boeing, SpaceX Outline Objectives to ISS Flights

Boeing will be first to carry US astronauts to space

Japanese businessman set to resume space tourist training

Sailing spacecraft LightSail to harness power of solar wind

TECH SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TECH SPACE
NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

TECH SPACE
SpaceX releases animation of heavy-lift Falcon rocket

NASA TV Coverage Reset for Launch of Newest Earth-Observing Mission

Japan delays launch of satellite due to weather

British Satellite to Be Launched by Russian Proton-M Carrier Rocket

TECH SPACE
Dawn ahead!

Habitable Evaporated Cores

Smaller Gas Giants Could Support Life

Will NASA's TESS Spacecraft Revolutionize Exoplanet Hunting?

TECH SPACE
Vanguard Delivers Advanced EHF Bus Structure Assembly

Graphene edges can be tailor-made

The laser pulse that gets shorter all by itself

Eyeglasses that turn into sunglasses - at your command




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.