. 24/7 Space News .
EARTH OBSERVATION
How Earth sheds heat into space
by Staff Writers
Boston MA (SPX) Sep 25, 2018

file image

Just as an oven gives off more heat to the surrounding kitchen as its internal temperature rises, the Earth sheds more heat into space as its surface warms up. Since the 1950s, scientists have observed a surprisingly straightforward, linear relationship between the Earth's surface temperature and its outgoing heat.

But the Earth is an incredibly messy system, with many complicated, interacting parts that can affect this process. Scientists have thus found it difficult to explain why this relationship between surface temperature and outgoing heat is so simple and linear. Finding an explanation could help climate scientists model the effects of climate change.

Now scientists from MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS) have found the answer, along with a prediction for when this linear relationship will break down.

They observed that Earth emits heat to space from the planet's surface as well as from the atmosphere. As both heat up, say by the addition of carbon dioxide, the air holds more water vapor, which in turn acts to trap more heat in the atmosphere. This strengthening of Earth's greenhouse effect is known as water vapor feedback. Crucially, the team found that the water vapor feedback is just sufficient to cancel out the rate at which the warmer atmosphere emits more heat into space.

Their findings, which appear in the Proceedings of the National Academy of Sciences, may also help to explain how extreme, hothouse climates in Earth's ancient past unfolded. The paper's co-authors are EAPS postdoc Daniel Koll and Tim Cronin, the Kerr-McGee Career Development Assistant Professor in EAPS.

A window for heat
In their search for an explanation, the team built a radiation code - essentially, a model of the Earth and how it emits heat, or infrared radiation, into space. The code simulates the Earth as a vertical column, starting from the ground, up through the atmosphere, and finally into space. Koll can input a surface temperature into the column, and the code calculates the amount of radiation that escapes through the entire column and into space.

The team can then turn the temperature knob up and down to see how different surface temperatures would affect the outgoing heat. When they plotted their data, they observed a straight line - a linear relationship between surface temperature and outgoing heat, in line with many previous works, and over a range of 60 kelvins, or 108 degrees Fahrenheit.

"So the radiation code gave us what Earth actually does," Koll says. "Then I started digging into this code, which is a lump of physics smashed together, to see which of these physics is actually responsible for this relationship."

To do this, the team programmed into their code various effects in the atmosphere, such as convection, and humidity, or water vapor, and turned these knobs up and down to see how they in turn would affect the Earth's outgoing infrared radiation.

"We needed to break up the whole spectrum of infrared radiation into about 350,000 spectral intervals, because not all infrared is equal," Koll says.

He explains that, while water vapor does absorb heat, or infrared radiation, it doesn't absorb it indiscriminately, but at wavelengths that are incredibly specific, so much so that the team had to split the infrared spectrum into 350,000 wavelengths just to see exactly which wavelengths were absorbed by water vapor.

In the end, the researchers observed that as the Earth's surface temperature gets hotter, it essentially wants to shed more heat into space. But at the same time, water vapor builds up, and acts to absorb and trap heat at certain wavelengths, creating a greenhouse effect that prevents a fraction of heat from escaping.

"It's like there's a window, through which a river of radiation can flow to space," Koll says. "The river flows faster and faster as you make things hotter, but the window gets smaller, because the greenhouse effect is trapping a lot of that radiation and preventing it from escaping."

Koll says this greenhouse effect explains why the heat that does escape into space is directly related to the surface temperature, as the increase in heat emitted by the atmosphere is cancelled out by the increased absorption from water vapor.

Tipping towards Venus
The team found this linear relationship breaks down when Earth's global average surface temperatures go much beyond 300 K, or 80 F. In such a scenario, it would be much more difficult for the Earth to shed heat at roughly the same rate as its surface warms. For now, that number is hovering around 285 K, or 53 F.

"It means we're still good now, but if the Earth becomes much hotter, then we could be in for a nonlinear world, where stuff could get much more complicated," Koll says.

To give an idea of what such a nonlinear world might look like, he invokes Venus - a planet that many scientists believe started out as a world similar to Earth, though much closer to the sun.

"Some time in the past, we think its atmosphere had a lot of water vapor, and the greenhouse effect would've become so strong that this window region closed off, and nothing could get out anymore, and then you get runaway heating," Koll says.

"In which case the whole planet gets so hot that oceans start to boil off, nasty things start to happen, and you transform from an Earth-like world to what Venus is today."

For Earth, Koll calculates that such a runaway effect wouldn't kick in until global average temperatures reach about 340 K, or 152 F. Global warming alone is insufficient to cause such warming, but other climatic changes, such as Earth's warming over billions of years due to the sun's natural evolution, could push Earth towards this limit, "at which point, we would turn into Venus."

Koll says the team's results may help to improve climate model predictions. They also may be useful in understanding how ancient hot climates on Earth unfolded.

"If you were living on Earth 60 million years ago, it was a much hotter, wacky world, with no ice at the pole caps, and palm trees and crocodiles in what's now Wyoming," Koll says. "One of the things we show is, once you push to really hot climates like that, which we know happened in the past, things get much more complicated."


Related Links
Massachusetts Institute of Technology
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Scientists locate parent lightning strokes of sprites
Beijing, China (SPX) Sep 25, 2018
Thunderstorms can generate various forms of transient luminous events, such as red sprites, gigantic jets, and blue jets, through the charge transfer involved in the lightning forged inside thunderclouds. Based on the Lightning Effects Research Platform (LERP), a research team from the Institute of Atmospheric Physics of the Chinese Academy of Sciences reported the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Japanese Rocket Blasts Off to Resupply Station

European Planetary Mapping: A Historical View of Our Solar System

Partnership, Teamwork Enable Landmark Science Glovebox Launch to Space Station

Russia May Help India to Launch Country's First Manned Space Mission

EARTH OBSERVATION
China to launch Long March-9 rocket in 2028

Arianespace to launch KOMPSAT-7 for the Korea Aerospace Research Institute (KARI) using a Vega C launch vehicle

Russia plans to develop reusable stage for carrier rocket by 2023, FPI Says

Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

EARTH OBSERVATION
Martian moon may have come from impact on home planet

Ancient Mars had right conditions for underground life

NASA's MAVEN Selfie Marks Four Years in Orbit at Mars

First to red planet will become Martians: Canada astronaut

EARTH OBSERVATION
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

EARTH OBSERVATION
How Max Polyakov from Zaporozhie develops the Ukrainian space industry

SiriusXM buys Pandora to step up streaming music wars

Matthias Maurer graduates as ESA astronaut

Space-related start-up technology companies create synergistic innovation

EARTH OBSERVATION
Origami opens up smart options for architecture on the Moon and Mars

Small satellite demonstrates possible solution for 'space junk'

Three NASA Missions Return 1st-Light Data

Chemists functionalize boron nitride with other nano systems

EARTH OBSERVATION
Gaia finds candidates for interstellar 'Oumuamua's home

NASA is taking a new look at searching for life beyond Earth

Astronomers use Earth's natural history as guide to spot vegetation on new worlds

What Recipes Produce a Habitable Planet

EARTH OBSERVATION
Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.