Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




TIME AND SPACE
Horizontal levitation: the ultimate solution to particle separation
by Staff Writers
Nottingham, UK (SPX) Jun 20, 2014


"Forces acting on glass particles in a magnetic field." Image courtesy Liu et al.

Magnetic separators exploit the difference in magnetic properties between minerals, for example when separating magnetite from quartz. But this exercise becomes considerably more complex when the particles are not magnetic.

In the wake of previous particle levitation experiments under high-power magnetic fields, a new study reveals that particles are deflected away from the magnet's round-shaped bore centre in a horizontal direction.

Previous studies had observed the vertical levitation of the particles. These findings are presented by Shixiao Liu from the Faculty of Engineering, University of Nottingham, UK and colleagues, in a paper recently published in EPJ E, and could led to a new concept in particles and minerals separation technologies.

The authors analysed video frames covering 0.1 second each of the movement of glass and pyrite particles of roughly one millimetre diameter in a solution that was subjected to a strong non-uniform magnetic field created by a superconducting magnet.

The authors show that pyrite and glass particles were deflected and settled at certain positions in a specially designed container. They explain that this pattern is due to differences in the particles' densities and magnetic susceptibilities.

The gradient in the magnetic field gives rise to a radial force-defined by the particles' magnetic properties-capable of separating the glass from pyrite particles.

At the same time, the magnetic field gradient also induces the so-called Magneto-Archimedes force, which compensates for the force of gravity. Surprisingly, the particle size seems to have little influence on the results, at least for the limited size range examined in these experiments.

The authors then confirmed their experimental findings using mathematical simulations of the particle displacement.

.


Related Links
University of Nottingham
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Long-range tunneling of quantum particles
Innsbruck, Austria (SPX) Jun 13, 2014
One of the most remarkable consequences of the rules in quantum mechanics is the capability of a quantum particle to penetrate through a potential barrier even though its energy would not allow for the corresponding classical trajectory. This is known as the quantum tunnel effect and manifests itself in a multitude of well-known phenomena. For example, it explains nuclear radioactive decay ... read more


TIME AND SPACE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

TIME AND SPACE
NASA Invites Comment on Mars 2020 Environmental Impact Statement

Opportunity is exploring the west rim of Endeavour Crater

Discovery of Earth's Northernmost Perennial Spring

US Congress and Obama administration face obstacles in Mars 2030 project

TIME AND SPACE
NASA Turns Down the Volume on Rocket Noise

Duo Tries on Spacesuits While Advanced Microgravity Science Continues

Five Things We'll Learn from Orion's First Flight Test

Coffee for cosmonauts! First 'ISSpresso' machine to arrive in space

TIME AND SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TIME AND SPACE
D-Day for the International Space Station

US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

Decontamination System to Up Research on Space Station

TIME AND SPACE
European satellite chief says industry faces challenges

Payload fueling begins for nexy Arianespace Soyuz flight

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

TIME AND SPACE
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

TIME AND SPACE
Scientists see Earth's most abundant mineral for the first time

Researchers develop efficient approach to manufacture 3D metal parts

Selex ES is upgrading RAT 31 DL radar in Turkey

Defense against laser beam flashes at aircraft being tested




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.