Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Holes in valence bands of nanodiamonds discovered
by Staff Writers
Berlin, Germany (SPX) Jan 29, 2015


Nanodiamonds are tiny crystals only a few nanometres in size. Image courtesy Mohamed Sennour, MINES ParisTech.

But how are the electronic properties of nanodiamonds deposited on a solid-state substrate different from those displayed by nanodiamonds in aqueous solutions?

Dr. Tristan Petit working in the HZB team headed by Prof. Emad F. Aziz has now investigated this with the help of absorption and emission spectroscopy at BESSY II.

Their results, just published in Nanoscale, demonstrate that nanodiamonds display valence holes in aqueous solutions, which are not observed when characterized as a thin film.

"The interaction between the nanodiamonds and the neighbouring molecules and ions is especially strong in water", say Petit. The adsorption of active pharmaceutical ingredients on nanodiamonds can be influenced, for example, by adding salts or changing the pH value.

Petit and his colleagues have now discovered that the electronic signature of surface states of nanodiamonds in aqueous dispersions are considerably different from those of nanodiamonds on a solid-state substrate.

With the help of micro-jet technology developed by Emad Aziz at HZB, they examined liquid samples in vacuum using X-ray spectroscopy and developed a detailed picture of the filled and unfilled electron states in valence and conduction bands.

Their results show that holes, i.e. missing electrons in the valence band, formed on the surfaces of the nanodiamonds in the aqueous dispersion.

"This suggests that electrons at the surface of nanodiamonds are donated to the surrounding water molecules", Petit suggests.

The physicists suspect they might also influence the nanoparticles' chemical, optical, and catalytic properties through changes to their electronic structure. They would like to determine in future studies whether the catalytic effect of nanodiamonds in aqueous environment can be increased in order to split water molecules into oxygen and hydrogen using light.

.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Nanoshuttle wear and tear: It's the mileage, not the age
New York NY (SPX) Jan 28, 2015
As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, for instance, for medical uses, including drug delivery, early diagnosis, disease monitoring, instrumentation, and surgery. In a new study led by Henry Hess, associate professor ... read more


NANO TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

NANO TECH
Gully patterns document Martian climate cycles

The two faces of Mars

Several Drives This Week Put Opportunity Near Marathon Distance

Helicopter Could be 'Scout' for Mars Rovers

NANO TECH
NASA, Boeing, SpaceX Outline Objectives to ISS Flights

Boeing will be first to carry US astronauts to space

Japanese businessman set to resume space tourist training

Sailing spacecraft LightSail to harness power of solar wind

NANO TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

NANO TECH
NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts' year-long mission will test limits

NANO TECH
SpaceX releases animation of heavy-lift Falcon rocket

NASA TV Coverage Reset for Launch of Newest Earth-Observing Mission

Japan delays launch of satellite due to weather

British Satellite to Be Launched by Russian Proton-M Carrier Rocket

NANO TECH
Dawn ahead!

Habitable Evaporated Cores

Smaller Gas Giants Could Support Life

Will NASA's TESS Spacecraft Revolutionize Exoplanet Hunting?

NANO TECH
Vanguard Delivers Advanced EHF Bus Structure Assembly

Graphene edges can be tailor-made

The laser pulse that gets shorter all by itself

Eyeglasses that turn into sunglasses - at your command




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.