. 24/7 Space News .
WATER WORLD
Historical rainfall levels are significant in carbon emissions from soil
by Staff Writers
Austin TX (SPX) May 30, 2017


Microbes in the soil emit billions of tons of carbon into the atmosphere each year. A new study from The University of Texas at Austin finds that some microbes produce more atmospheric carbon than others, and that historic rainfall levels drive these microbes' response. Image courtesy of Pacific Northwest National Laboratory.

Scientists have known that microbes living in the ground can play a major role in producing atmospheric carbon that can accelerate climate change, but now researchers from The University of Texas at Austin have discovered that soil microbes from historically wetter sites are more sensitive to moisture and emit significantly more carbon than microbes from historically drier regions.

The findings, reported in the Proceedings of the National Academy of Sciences, point the way toward more accurate climate modeling and improve scientists' understanding of distinct regional differences in microbial life.

Microbes in the soil add between 44 billion and 77 billion tons of carbon to the atmosphere each year - more than all fossil fuels combined - through a process called respiration. As the planet warms, soil respiration is expected to increase, but forecasters have had trouble accurately pinpointing by how much.

The new research indicates that to do a better job of predicting changes in soil respiration, forecasters need to pay attention not only to climate change but also to climate history, as microbes respond differently to shifts in their environment in wetter versus drier areas.

In regions with more rainfall historically, soil microbes were found to respire twice as much carbon to the atmosphere as microbes from drier regions. Scientists determined that this was because the microbes responded differently to change: Those from the wettest areas were four times as sensitive to shifts in moisture as their counterparts from the driest areas.

"Current models assume that soil microbes at any site around the world exhibit the same responses to environmental change and do so instantaneously," says Christine Hawkes, a professor of integrative biology, "but we demonstrated that historical rainfall shapes the soil respiration response."

It is unclear whether the insight into how soil microbes respond to moisture would drastically change the results of worldwide climate modeling efforts, which, so far, have taken different approaches to estimating how soil respiration responds to moisture. Incorporating the new discovery into ecosystem models, however, could help improve predictions based on local or regional differences in soil respiration and climate history.

Hawkes and the team conducted three long-term studies involving field research and lab experiments occurring over six years. In each case, the finding was the same: Historical rainfall levels proved critical for how soil microbes would respond to change, affecting the outcome just as temperature does.

"You've heard of the crisis of replication? Well, we tested this three different ways, and we couldn't get the soils to do anything different," Hawkes says. "This suggests that rainfall legacies will constrain future soil function, but we need further study to figure out by how much and for how long."

The research also highlights previously unknown nuances about the communities of microbes living under ground. Simple and microscopic, microbes nonetheless possess distinctive traits. Through decomposition and respiration, soil microbes affect the balance between carbon trapped under ground and emitted into the atmosphere, and this balance is not the same from one regional community to the next, the UT Austin researchers learned.

They examined soil collected at various spots in Texas along the Edwards Plateau and found that microbes from the driest soil samples (living in areas with one-quarter as much water as the microbes from the wettest soils) responded with a fraction of the carbon emissions their wet-soil cousins produced. These differences persisted regardless of other soil characteristics.

"Because microbes are small and enormously diverse, we have this idea that when the environment changes, microbes can rapidly move around or shift local abundances to track that environmental change," Hawkes said. "We discovered, however, that soil microbes and their functions are highly resistant to change. Resistance to environmental change matters because it means that previous local conditions will constrain how ecosystems function when faced with a shift in climate."

Research Report

WATER WORLD
China's 'toilet revolution' targets dirty lavatories
Beijing (AFP) May 29, 2017
China is taking care of a pressing need: Authorities have installed or upgraded over 50,000 lavatories in a "national toilet revolution" designed to clean up filthy public restrooms. Relief is coming soon, and by the end of the year China expects to have added or upgraded a total of 71,000 toilets, well exceeding a target initially set in 2015. The plan to fix the country's bad reputatio ... read more

Related Links
University of Texas at Austin
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

WATER WORLD
Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

Neptune: Neutralizer-free plasma propulsion

Spaceflight buys Electron Rocket from Rocket Lab

WATER WORLD
Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

WATER WORLD
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

WATER WORLD
Satellite industry supports FCC proposal to reduce internet regulations for service providers

AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

WATER WORLD
New method allows real-time monitoring of irradiated materials

Neutron lifetime measurements take new shape for in situ detection

Solving the riddle of the snow globe

One-dimensional crystals for low-temperature thermoelectric cooling

WATER WORLD
Water forms superstructure around DNA, new study shows

How RNA formed at the origins of life

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Scientists propose synestia, a new type of planetary object

WATER WORLD
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.