![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Houghton MI (SPX) Nov 01, 2018
High-resolution magnetic resonance imaging (MRI) machines can work better by changing the structure of radio probes from coils to antennas. How can you make a high-frequency MRI machine more precise? By taking an electrical engineering approach to creating a better, uniform magnetic field. In a new study published in Transactions on Microwave Theory and Techniques, researchers have discovered that radio frequency probes with structures inspired by microstrip patch antennas increase MRI resolution in high-frequency MRI machines, when compared to conventional surface coils used now. "When frequencies become higher, wavelengths become shorter, and your magnetic field loses uniformity," says Elena Semouchkina, an associate professor of electrical and computer engineering at Michigan Tech. "Uniformity is important for high resolution images, so we proposed a new approach to developing these probes." Semouchkina explains that kind of antenna that you see on the top of a building isn't quite the same thing used here, but instead, the team's design was inspired by microstrip patch antenna (MPA). The design is relatively simple: MPAs are made of a flat piece of metal grounded by a larger piece of metal. They're cheap, simple, and easy to make, which is why they're so often used in telecommunications. MRIs work by issuing radio frequency pulses in a magnetic field via probes with coils or bird-cage like structures. That's then used to create an image. But those conventional coils have frequency limits: too high and they can't create uniformed magnetic fields at the volume researchers need. MPAs are an alternative where waves oscillate in the cavity formed between the patch and ground plane electrodes, which are accompanied by currents in the patch electrode and, respectively, oscillating magnetic fields around the patch, providing a magnetic field that is both even and strong. "While the complexity of birdcage coils increases with the increase in operation frequency, patch-based probes can provide quality performance in the higher microwave range while still having a relatively simple structure," Semouchkina says. They also showed smaller radiation losses, making them competitive with, even better, than conventional coils. Because of the damage high-frequency radio waves cause to humans, the study was limited to high frequency machines - not the metal tube that we're used to seeing in hospitals and medical centers. Humans can only sustain frequencies up to seven Teslas, but ultrahigh fields up to 21.1 Teslas can be used in testing on animal models, and in tissue samples. Semouchkina is already known for her work involving invisibility cloaks, which involve redirecting electromagnetic waves around an area to hide an object. "We use some of the same approaches that we developed in cloaking devices here, like making antenna smaller," she said.
![]() ![]() Apple Watch supplier under fire over China student labour Washington (AFP) Oct 30, 2018 Apple is investigating a factory in southwest China after a labour rights group said the tech giant's supplier forced student workers to work "like robots" to assemble its popular Apple Watch. Many were compelled to work in order to get their vocational degrees and had to do night shifts, according to an investigation by Hong Kong-based NGO Students and Scholars Against Corporate Misbehaviour (SACOM). SACOM interviewed 28 students at the plant in Chongqing municipality over the summer, and all o ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |