. 24/7 Space News .
TIME AND SPACE
High-precision magnetic field sensing
by Staff Writers
Zurich, Switzerland (SPX) Dec 07, 2016


The highly sensitive magnetic field sensor. Image courtesy ETH Zurich and Peter Ruegg

Researchers from the Institute for Biomedical Engineering, which is operated jointly by ETH Zurich and the University of Zurich, have succeeded in measuring tiny changes in strong magnetic fields with unprecedented precision. In their experiments, the scientists magnetised a water droplet inside a magnetic resonance imaging (MRI) scanner, a device that is used for medical imaging.

The researchers were able to detect even the tiniest variations of the magnetic field strength within the droplet. These changes were up to a trillion times smaller than the seven tesla field strength of the MRI scanner used in the experiment. "Until now, it was possible only to measure such small variations in weak magnetic fields," says Klaas Prussmann, Professor of Bioimaging at ETH Zurich and the University of Zurich.

An example of a weak magnetic field is that of the Earth, where the field strength is just a few dozen microtesla. For fields of this kind, highly sensitive measurement methods are already able to detect variations of about a trillionth of the field strength, says Prussmann. "Now, we have a similarly sensitive method for strong fields of more than one tesla, such as those used, inter alia, in medical imaging."

Newly developed sensor
The scientists based the sensing technique on the principle of nuclear magnetic resonance, which also serves as the basis for magnetic resonance imaging and the spectroscopic methods that biologists use to elucidate the 3D structure of molecules.

However, to measure the variations, the scientists had to build a new high-precision sensor, part of which is a highly sensitive digital radio receiver. "This allowed us to reduce background noise to an extremely low level during the measurements," says Simon Gross. Gross wrote his doctoral thesis on this topic in Prussmann's group and is lead author of the paper published in the journal Nature Communications.

Eliminating antenna interference
In the case of nuclear magnetic resonance, radio waves are used to excite atomic nuclei in a magnetic field. This causes the nuclei to emit weak radio waves of their own, which are measured using a radio antenna; their exact frequency indicates the strength of the magnetic field.

As the scientists emphasise, it was a challenge to construct the sensor in such a way that the radio antenna did not distort the measurements. The scientists have to position it in the immediate vicinity of the water droplet, but as it is made of copper it becomes magnetised in the strong magnetic field, causing a change in the magnetic field inside the droplet.

The researchers therefore came up with a trick: they cast the droplet and antenna in a specially prepared polymer; its magnetisability (magnetic susceptibility) exactly matched that of the copper antenna. In this way, the scientists were able to eliminate the detrimental influence of the antenna on the water sample.

Broad applications expected
This measurement technique for very small changes in magnetic fields allows the scientists to now look into the causes of such changes. They expect their technique to find use in various areas of science, some of them in the field of medicine, although the majority of these applications are still in their infancy.

"In an MRI scanner, the molecules in body tissue receive minimal magnetisation - in particular, the water molecules that are also present in blood," explains doctoral student Gross.

"The new sensor is so sensitive that we can use it to measure mechanical processes in the body; for example, the contraction of the heart with the heartbeat."

The scientists carried out an experiment in which they positioned their sensor in front of the chest of a volunteer test subject inside an MRI scanner. They were able to detect periodic changes in the magnetic field, which pulsated in time with the heartbeat.

The measurement curve is reminiscent of an electrocardiogram (ECG), but unlike the latter measures a mechanical process (the contraction of the heart) rather than electrical conduction.

"We are in the process of analysing and refining our magnetometer measurement technique in collaboration with cardiologists and signal processing experts," says Prussmann. "Ultimately, we hope that our sensor will be able to provide information on heart disease - and do so non-invasively and in real time."

Development of better contrast agents
The new measurement technique could also be used in the development of new contrast agents for magnetic resonance imaging: in MRI, the image contrast is based largely on how quickly a magnetised nuclear spin reverts to its equilibrium state.

Experts call this process relaxation. Contrast agents influence the relaxation characteristics of nuclear spins even at low concentrations and are used to highlight certain structures in the body.

In strong magnetic fields, sensitivity issues had previously restricted scientists to measurement of just two of the three spatial nuclear spin components and their relaxation. They had to rely on an indirect measurement of relaxation in the important third dimension. For the first time, the new high-precision measurement technique allows the direct measurement of all three dimensions of nuclear spin in strong magnetic fields.

Direct measurement of all three nuclear spin components also paves the way for future developments in nuclear magnetic resonance (NMR) spectroscopy for applications in biological and chemical research.

Gross S, Barmet C, Dietrich BE, Brunner DO, Schmid T, Prussmann KP: Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nature Communications, published online 2 December 2016, doi: 10.1038/NCOMMS13702


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
For the first time, scientists catch water molecules passing the proton baton
Seattle WA (SPX) Dec 02, 2016
Water conducts electricity, but the process by which this familiar fluid passes along positive charges has puzzled scientists for decades. But in a paper published in the journal Science, an international team of researchers has finally caught water in the act - showing how water molecules pass along excess charges and, in the process, conduct electricity. "This fundamental process in chem ... read more


TIME AND SPACE
Cold plasma freshens up French fries

Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

Russian Space Sector Overcomes Failures

TIME AND SPACE
Russia to Launch Fewer Spacecraft in 2016 Than US, China for First Time

Soyuz-U Carrier Rocket Installed to Baikonur Launching Pad

Ariane 5's impressive 75 in-a-row launch record

Vega ready for GOKTURK-1A to be encapsulated

TIME AND SPACE
CaSSIS Sends First Images from Mars Orbit

First views of Mars show potential for ESA's new orbiter

ExoMars space programme needs an extra 400 million euros

Opportunity team onsidering a new route due to boulder field

TIME AND SPACE
China launches 4th data relay satellite

Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

TIME AND SPACE
ESA looks at how to catch a space entrepreneur

Thales and SENER to jointly supply optical payloads for space missions

Citizens' space debate: the main findings and the future

Two-year extensions confirmed for ESA's science missions

TIME AND SPACE
Shape matters when light meets atom

New technology of ultrahigh density optical storage researched at Kazan University

Earth's 'technosphere' now weighs 30 trillion tons

A watershed moment in understanding how H2O conducts electricity

TIME AND SPACE
Biologists watch speciation in a laboratory flask

Life before oxygen

Timing the shadow of a potentially habitable extrasolar planet

Fijian ants began farming 3 million years ago

TIME AND SPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.