. 24/7 Space News .
Herschel Scopes Best Candidate For A Supernova Explosion

Artist's impression of Rho Cassiopeiae at the 2000 outburst. Upper right: Spectral line profiles. Bottom right: Light curve. Picture credit: Gabriel P�rez D�az and the Instituto de Astrof�sica de Canarias.

Santa Cruz - Feb 11, 2003
An international team of astronomers using the Utrecht Echelle Spectrograph on the William Herschel Telescope has identified the bright star Rho Cassiopeiae as the best candidate to undergo a supernova explosion in the near future. The results of this investigation are to be published in a research paper in The Astrophysical Journal on February 1.

Rho Cassiopeiae is one of the brightest yellow "hypergiant" stars in the Milky Way. In spite of being 10,000 light-years away from the Earth, this star is visible to the naked eye as it is over half a million times more luminous than the Sun.

Yellow hypergiants are rare objects; there are only 7 of them known in our Galaxy. They are very luminous and have surface temperatures between 3,500 and 7,000 degrees. It is believed that these stars are at a very evolved stage of their life and will ultimately explode as supernovae.

Yellow hypergiants are peculiar stars because they display an uncommon combination of brightness and temperature, which places them in a so-called Yellow Evolutionary Void.

When approaching the Void these stars may show signs of peculiar instability. Theoretically, they cannot cross the Void unless they have lost sufficient mass. During this process these stars end up in a supernova explosion: their ultimate and violent fate. The process of approaching the Void however, has not yet been studied observationally in sufficient detail as these events are very rare.

The highly efficient Utrecht Echelle Spectrograph has allowed astronomers to monitor Rho Cassiopeiae in detail from 1993 to 2002. The observations were aimed at investigating the processes occurring when yellow hypergiants approach and bounce against the Yellow Evolutionary Void, and the results revealed almost regular variations of temperature within a few hundred degrees.

However, what happened with Rho Cassiopeiae during the summer of 2000 went beyond anybody's expectations.

The star suddenly cooled down from 7,000 to 4,000 degrees within a few months. Astronomers discovered molecular absorption bands of titanium-oxide (TiO) formed in the slowly expanding atmosphere, suggesting that they had witnessed the formation of a cool and extended shell which was detached from the star by a shock wave carrying a mass equal to 10% of our Sun or 10,000 times the mass of the Earth. This is the highest amount of ejected material astronomers have ever witnessed in a single stellar eruption.

The outburst was similar to the shock wave a jet aircraft produces, which can be heard as a sonic boom. Gas rushed outwards at four times the speed of sound.

Dr. Garik Israelian, one of the members of the discovery team, said: "Rho Cassiopeiae could end up in a supernova explosion at any time as it has almost consumed the nuclear fuel at its core.

"It is perhaps the best candidate for a supernova in our Galaxy and the monitoring of this and other unstable evolved stars may help us to shed some light on the very complicated evolutionary episodes that precede supernova explosions."

Rho Cassiopeiae experienced periods of excessive mass loss in 1893 and around 1945, that appeared to be associated with a decrease in effective temperature and the formation of a dense envelope. The results suggest that Rho Cassiopeiae goes through these events every 50 years approximately.

Since the event in the year 2000, Rho Cassiopeiae's atmosphere has been pulsating in a strange manner. Its outer layer now seems to be collapsing again, an event that looks similar to one that preceded the last outburst.

The researchers think another eruption, possibly a stronger one, is imminent.

Dr. Israelian comments: "Given the large distance it is possible that Rho Cassiopeiae has already exploded and become a black hole or a neutron star. In 10,000 years the star will undergo 200 outbursts (if the frequency is 50 years). In each event it will lose 0.1 times the mass of the Sun and therefore 20 solar masses will be lost in 10,000 years! Very likely Rho Cassiopeiae does not exist any more."

The science team involved in this research consists of Drs. Alex Lobel, Andrea Dupree, Robert Stefanik and Guillermo Torres (CfA, USA), Garik Israelian (Instituto de Astrof�sica de Canarias, Spain), Nancy Morrison (University of Toledo, USA), Cornelis de Jager and Hans Nieuwenhuijzen (SRON, The Netherlands), Ilya Ilyin (University of Oulu, Finland) and Faig Musaev (SAO, Russia).

Related Links
William Herschel Telescope
Isaac Newton Group of Telescopes
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Pictures before Columbia crash may show major damage
CAPE CANAVERAL, Florida (AFP) Feb 07, 2003


---------------------------------------------------------
New from Telescopes.com!

It's new. And it's downright terrific!

Celestron's CPC Schmidt-Cassegrain telescope is the scope you've been waiting for! It offers new alignment technology, advanced engineering, and bold new design at a new, low price!

In fact, Celestron's Professional Computerized (CPC) scope with revolutionary SkyAlign Alignment Technology redefines everything that amateur astronomers are looking for. It offers quick and simple alignment, GPS technology, unsurpassed optical quality, ease of use, advanced ergonomics, enhanced computerization and, most important, affordability.

Want to view M-31 tonight? One button takes you there!

Shop for telescopes online at Telescopes.com! today!
------------------------------------------------------------







  • Artemis Finally Reaches Operational Orbit
  • Lord Sainsbury Launches Three-Year Strategy For UK Space
  • Artemis Nearly There
  • Rosetta: A Comet Ride To Solve Planetary Mysteries

  • Using an Earth Wind Tunnel to Test a Parachute Bound for Mars
  • Mars May Be Much Older Or Younger Than Thought
  • Mars and the Final Four
  • Hunt For Life On Mars Dealt Another Blow

  • Vandenberg Launch Facility Gets Facelift
  • Flight 159: The Last Ariane 4
  • ILS Investigation Panel Releases Results of Initial Review
  • Orbital Set To Launch Nasa Satellite Aboard Pegasus Space Launch Vehicle

  • Norway Buys $15 Million Worth of RADARSAT-2 Data from MDA
  • Space Imaging Offers Online Shopping Cart At Last
  • Analog Detection Of Concealed Weapons of Mass Destruction
  • Is Remote Sensing The Answer To Today's Agriculture Problems

  • Planetary Scientists Applaud President's FY04 Budget Proposal
  • New Moons Found Around Neptune
  • Novel Way To Look For Comets Beyond Neptune
  • First Neptune Trojan Discovered

  • Scientists Catch Their First Elusive "Dark" Gamma-Ray Burst
  • Biggest Zoom Lens In Space Extends Hubble's Reach
  • The Strange And Mysterious Star V838 Mon
  • Gravity-Wave Search Produces Initial Data

  • Moon's Early History May Have Been Interrupted By Big Burp
  • Memories Of Orange Rock From The Lunar Age
  • Taos Goes Lunar With International Talkfest
  • Moon and Earth Formed out of Identical Material

  • Boeing Delta II Lifts Air Force Satellites into Action
  • Delta 2 Ready to Launch Pair of GPS Birds
  • Crop Producers Go High-Tech With GPS Technology
  • Mobilus Finds Your Stolen Car Within 20 Minutes

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement