Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



EARTH OBSERVATION
Heavy nitrogen molecules reveal planetary-scale tug-of-war
by Staff Writers
Houston TX (SPX) Nov 29, 2017


Researchers from Rice University and UCLA simulated high-energy chemistry in the upper atmosphere to reproduce enriched levels of 15N15N, molecules that contain only heavy isotopes of nitrogen.

Nature whispers its stories in a faint molecular language, and Rice University scientist Laurence Yeung and colleagues can finally tell one of those stories this week, thanks to a one-of-a-kind instrument that allowed them to hear what the atmosphere is saying with rare nitrogen molecules.

Yeung and colleagues at Rice, UCLA, Michigan State University and the University of New Mexico counted rare molecules in the atmosphere that contain only heavy isotopes of nitrogen and discovered a planetary-scale tug-of-war between life, the deep Earth and the upper atmosphere that is expressed in atmospheric nitrogen.

The research was published online this week in the journal Science Advances.

"We didn't believe it at first," said Yeung, the lead author of the study and an assistant professor of Earth, environmental and planetary sciences at Rice. "We spent about a year just convincing ourselves that the measurements were accurate."

The story revolves around nitrogen, a key element of life that makes up more than three-quarters of Earth's atmosphere. Compared with other key elements of life like oxygen, hydrogen and carbon, nitrogen is very stable.

Two atoms of it form N2 molecules that are estimated to hang around in the atmosphere for about 10 million years before being broken apart and reformed. And the vast majority of nitrogen has an atomic mass of 14. Only about 0.4 percent are nitrogen-15, an isotope that contains one extra neutron. Because nitrogen-15 is already rare, N2 molecules that contain two nitrogen-15s - which chemists refer to as 15N15N - are the rarest of all N2 molecules.

The new study shows that 15N15N is 20 times more enriched in Earth's atmosphere than can be accounted for by processes happening near Earth's surface.

"We think the 15N15N enrichment fundamentally comes from chemistry in the upper atmosphere, at altitudes close to the orbit of the International Space Station," Yeung said. "The tug-of-war comes from life pulling in the other direction, and we can see chemical evidence of that."

Co-author Edward Young, professor of Earth, planetary and space sciences at UCLA, said, "The enrichment of 15N15N in Earth's atmosphere reflects a balance between the nitrogen chemistry that occurs in the atmosphere, at the surface due to life and within the planet itself. It's a signature unique to Earth, but it also gives us a clue about what signatures of other planets might look like, especially if they are capable of supporting life as we know it."

The chemical processes that produce molecules like N2 can change the odds that "isotope clumps" like 15N15N will be formed. In previous work, Yeung, Young and colleagues used isotope clumps in oxygen to identify tell-tale signatures of photosynthesis in plants and ozone chemistry in the atmosphere. The nitrogen study began four years ago when Yeung, then a postdoctoral researcher at UCLA, learned about a first-of-its-kind mass spectrometer that was being installed in Young's lab.

"At that time, no one had a way to reliably quantify 15N15N," said Yeung, who joined Rice's faculty in 2015. "It has an atomic mass of 30, the same as nitric oxide. The signal from nitric oxide usually overwhelms the signal from 15N15N in mass spectrometers."

The difference in mass between nitric oxide and 15N15N is about two one-thousandths the mass of a neutron. When Yeung learned that the new machine in Young's lab could discern this slight difference, he applied for grant funding from the National Science Foundation (NSF) to explore exactly how much 15N15N was in Earth's atmosphere.

"Biological processes are hundreds to a thousand times faster at cycling nitrogen through the atmosphere than are geologic processes," Yeung said. "If it's all business as usual, one would expect that the atmosphere would reflect these biological cycles."

To find out if this was the case, co-authors Joshua Haslun and Nathaniel Ostrom at Michigan State University conducted experiments on N2-consuming and N2-producing bacteria to determine their 15N15N signatures.

These experiments suggested that one should see a bit more 15N15N in air than random pairings of nitrogen-14 and nitrogen-15 would produce - an enrichment of about 1 part per 1,000, Yeung said.

"There was a bit of enrichment in the biological experiments, but not nearly enough to account for what we'd found in the atmosphere," Yeung said. "In fact, it meant that the process causing the atmospheric 15N15N enrichment has to fight against this biological signature. They are locked in a tug-of-war."

The team eventually found that zapping mixtures of air with electricity, which simulates the chemistry of the upper atmosphere, could produce enriched levels of 15N15N like they measured in air samples. Mixtures of pure nitrogen gas produced very little enrichment, but mixtures approximating the mix of gases in Earth's atmosphere could produce a signal even higher than what was observed in air.

"So far we've tested natural air samples from ground level and from altitudes of 32 kilometers, as well as dissolved air from shallow ocean water samples," he said. "We've found the same enrichment in all of them. We can see the tug-of-war everywhere."

Research paper

EARTH OBSERVATION
Groundwater depletion maybe major source of atmospheric carbon dioxide
Washington DC (SPX) Nov 22, 2017
Humans may be adding large amounts of carbon dioxide to the atmosphere by using groundwater faster than it is replenished, according to new research. This process, known as groundwater depletion, releases a significant amount of carbon dioxide into the atmosphere that has until now been overlooked by scientists in calculating carbon sources, according to the new study. The study's authors ... read more

Related Links
Rice University
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

Can a magnetic sail slow down an interstellar probe

SSL Selected to Conduct Power and Propulsion Study for NASA's Deep Space Gateway Concept

EARTH OBSERVATION
Flat-Earther's self-launch plan hits a snag

Mechanisms are critical to all space vehicles

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

Russia loses contact with satellite after launch from new spaceport

EARTH OBSERVATION
Earthworms can reproduce in Mars-like soil

Gadgets for Mars

Ice shapes the landslide landscape on Mars

Winds Blow Dust off the Solar Panels Improving Energy Levels

EARTH OBSERVATION
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

EARTH OBSERVATION
UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

EARTH OBSERVATION
Borophene shines alone as 2-D plasmonic material

3rd SES bids farewell to ANGELS satellite

Booming life for 'PUBG' death-match computer game

New way to write magnetic info could pave the way for hardware neural networks

EARTH OBSERVATION
First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

EARTH OBSERVATION
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement