Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Heat-Based Technique Offers New Way to Measure Microscopic Particles
by Staff Writers
Raleigh NC (SPX) Mar 14, 2014


Particle counters are used in a wide variety of industries. For example, physicians use them to count and identify blood and cancer cells while ink manufacturers use them to ensure consistent toner quality. The new thermal technique could also lead to new applications.

Researchers have developed a new heat-based technique for counting and measuring the size of microscopic particles. The technique is less expensive than light-based techniques and can be used on a wider array of materials than electricity-based techniques.

The research was performed by faculty at North Carolina State University, the University of North Carolina at Chapel Hill and Marquette University.

"We launched this study purely out of curiosity, but it's developed into a technique that has significant advantages over existing methods for counting and measuring the size of microscopic objects," says Dr. Glenn Walker, senior author of a paper on the work and an associate professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.

Particle counters are used in a wide variety of industries. For example, physicians use them to count and identify blood and cancer cells while ink manufacturers use them to ensure consistent toner quality. The new thermal technique could also lead to new applications.

The researchers built a device in which an extremely narrow plastic tube rests on a silicon substrate. A wire is connected to a single point beneath the tube.

An extremely small current is run through the wire, both generating heat that radiates into the tube and measuring the temperature of the tube and its contents.

When a solution containing microscopic particles is injected into the tube it flows past the wire and the heated area. When the particles pass through this thermal zone they alter the electrical resistance of the wire.

This is because the thermal conductivity of a particle will either increase or decrease the temperature in that part of the tube, causing the electrical resistance to go up or down.

Since the researchers know the flow rate of the solution through the tube, they can measure the length of time that the electrical resistance was changed and calculate the size of the objects suspended in the solution.

"So far, we've tested this method effectively with objects in the 200 micron to 90 micron range - at the larger end of the spectrum commonly measured by commercial particle counters," Walker says.

"But in theory we'll be able to get down to the 10 micron range and measure individual cells. We're working on that now."

The researchers are also exploring ways to use the technique to detect unwelcome metal particles resulting from machine wear in mechanical devices.

"There are three advantages to our technique," Walker says.

"It's simple, it's inexpensive, and it can monitor any kind of particle. Flow cytometry - which uses light - is both expensive and complex, while Coulter counters - which use electricity - only work on objects that don't conduct electricity but are suspended in a solution that is conductive."

The paper, "A Microfluidic Device for Thermal Particle Detection," was published online March 11 in Microfluidics and Nanofluidics. Lead author of the paper is Ashwin Vutha, a former master's student at NC State now pursuing a Ph.D. at Rensselaer Polytechnic Institute. Co-authors are Benyamin Davaji and Dr. Chung Hoon Lee of Marquette.

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Researchers Describe Oxygen's Different Shapes
Raleigh NC (SPX) Mar 18, 2014
Oxygen-16, one of the key elements of life on earth, is produced by a series of reactions inside of red giant stars. Now a team of physicists, including one from North Carolina State University, has revealed how the element's nuclear shape changes depending on its state, even though other attributes such as spin and parity don't appear to differ. Their findings may shed light on how oxygen is pr ... read more


TECH SPACE
China's Jade Rabbit lunar rover rouses from latest slumber

NASA Releases First Interactive Mosaic of Lunar North Pole

Study on lunar crater counting shows crowdsourcing effective, accurate tool

Spacesuits And Moon Notes Among The Stars At Bonhams NYC Auction

TECH SPACE
The Exploration of Murray Ridge Continues

Mars Reconnaissance Orbiter Resumes Full Duty

NASA Orbiter Safe After Unplanned Computer Swap

Mars name-a-crater scheme runs into trouble

TECH SPACE
Astronauts train at Maxwell

ORBITEC and Wisconsin Await Countdown for "VEGGIE" to Space on SpaceX 3

Orion Makes Testing, Integration Strides Ahead of First Launch to Space

Global patent filings jump 5.1% in 2013: WIPO

TECH SPACE
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

TECH SPACE
ESA astronaut Thomas Pesquet will fly to the ISS in 2016

Russian Progress Spacecraft Boosts ISS Orbit

Japanese astronaut becomes ISS commander

Station Crew Preps for Return to Earth, Repairs Recycling System

TECH SPACE
Proton-M with two Russian communication satellites on board blasts off from Baikonur

Proton-M carrier rocket with two satellites abroad installed on Baikonur launch pad

Lockheed Martin Commercial Launch Services Announces Industry-Unique "Refund Or Reflight" Program

ASTRA 5B delivered for integration on Ariane 5 launcher

TECH SPACE
UK joins the planet hunt with Europe's PLATO mission

X-ray laser FLASH spies deep into giant gas planets

Crashing Comets Explain Surprise Gas Clump Around Young Star

Every red dwarf star has at least one planet

TECH SPACE
Heat-Based Technique Offers New Way to Measure Microscopic Particles

ISS dodges space junk

3D X-ray Film: Rapid Movements in Real Time

Reducing debris threat from satellite batteries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.