Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Heart of an exploded star observed in 3-D
by Staff Writers
Charlottesville VA (SPX) Jul 11, 2017


Remnant of Supernova 1987A as seen by ALMA. Purple area indicates emission from SiO molecules. Yellow area is emission from CO molecules. The blue ring is Hubble data that has been artificially expanded into 3-D. Credit ALMA (ESO/NAOJ/NRAO); R. Indebetouw; NASA/ESA Hubble

Supernovas - the violent endings of the brief yet brilliant lives of massive stars - are among the most cataclysmic events in the cosmos. Though supernovas mark the death of stars, they also trigger the birth of new elements and the formation of new molecules.

In February of 1987, astronomers witnessed one of these events unfold inside the Large Magellanic Cloud, a tiny dwarf galaxy located approximately 160,000 light-years from Earth.

Over the next 30 years, observations of the remnant of that explosion revealed never-before-seen details about the death of stars and how atoms created in those stars - like carbon, oxygen, and nitrogen - spill out into space and combine to form new molecules and dust. These microscopic particles may eventually find their way into future generations of stars and planets.

Recently, astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to probe the heart of this supernova, named SN 1987A. ALMA's ability to see remarkably fine details allowed the researchers to produce an intricate 3-D rendering of newly formed molecules inside the supernova remnant. These results are published in the Astrophysical Journal Letters.

The researchers also discovered a variety of previously undetected molecules in the remnant. These results appear in the Monthly Notices of the Royal Astronomical Society.

"When this supernova exploded, now more than 30 years ago, astronomers knew much less about the way these events reshape interstellar space and how the hot, glowing debris from an exploded star eventually cools and produces new molecules," said Remy Indebetouw, an astronomer at the University of Virginia and the National Radio Astronomy Observatory (NRAO) in Charlottesville.

"Thanks to ALMA, we can finally see cold 'star dust' as it forms, revealing important insights into the original star itself and the way supernovas create the basic building blocks of planets."

Supernovas - Star Death to Dust Birth
Prior to ongoing investigations of SN 1987A, there was only so much astronomers could say about the impact of supernovas on their interstellar neighborhoods.

It was well understood that massive stars, those approximately 10 times the mass of our sun or more, ended their lives in spectacular fashion.

When these stars run out of fuel, there is no longer enough heat and energy to fight back against the force of gravity. The outer reaches of the star, once held up by the power of fusion, then come crashing down on the core with tremendous force. The rebound of this collapse triggers a powerful explosion that blasts material into space.

As the endpoint of massive stars, scientists have learned that supernovas have far-reaching effects on their home galaxies. "The reason some galaxies have the appearance that they do today is in large part because of the supernovas that have occurred in them," Indebetouw said. "Though less than ten percent of stars become supernovas, they nonetheless are key to the evolution of galaxies."

Throughout the observable universe, supernovas are quite common, but since they appear - on average - about once every 50 years in a galaxy the size of the Milky Way, astronomers have precious few opportunities to study one from its first detonation to the point where it cools enough to form new molecules. Though SN 1987A is not in our home galaxy, it is still close enough for ALMA and other telescopes to study in fine detail.

Capturing 3-D Image of SN1987A with ALMA
For decades, radio, optical, and even X-ray observatories have studied SN 1987A, but obscuring dust in the remnant made it difficult to analyze the supernova's innermost core. ALMA's ability to observe at millimeter wavelengths - a region of the electromagnetic spectrum between infrared and radio light - make it possible to see through the intervening dust.

The researchers were then able to study the abundance and location of newly formed molecules - especially silicon monoxide (SiO) and carbon monoxide (CO), which shine brightly at the short submillimeter wavelengths that ALMA can perceive.

The new ALMA image and animation show vast new stores of SiO and CO in discrete, tangled clumps within the core of SN 1987A. Scientists previously modeled how and where these molecules would appear. With ALMA, the researchers finally were able to capture images with high enough resolution to confirm the structure inside the remnant and test those models.

Aside from obtaining this 3-D image of SN 1987A, the ALMA data also reveal compelling details about how its physical conditions have changed and continue to change over time. These observations also provide insights into the physical instabilities inside a supernova.

New Insights from SN 1987A
Earlier observations with ALMA verified that SN 1987A produced a massive amount of dust. The new observations provide even more details on how the supernova made the dust as well as the type of molecules found in the remnant.

"One of our goals was to observe SN 1987A in a blind search for other molecules," said Indebetouw. "We expected to find carbon monoxide and silicon monoxide, since we had previously detected these molecules." The astronomers, however, were excited to find the previously undetected molecules formyl cation (HCO+) and sulfur monoxide (SO).

"These molecules had never been detected in a young supernova remnant before," noted Indebetouw.

"HCO+ is especially interesting because its formation requires particularly vigorous mixing during the explosion." Stars forge elements in discrete onion-like layers. As a star goes supernova, these once well-defined bands undergo violent mixing, helping to create the environment necessary for molecule and dust formation.

The astronomers estimate that about 1 in 1000 silicon atoms from the exploded star is now found in free-floating SiO molecules. The overwhelming majority of the silicon has already been incorporated into dust grains. Even the small amount of SiO that is present is 100 times greater than predicted by dust-formation models. These new observations will aid astronomers in refining their models.

These observations also find that ten percent or more of the carbon inside the remnant is currently in CO molecules. Only a few out of every million carbon atoms are in HCO+ molecules.

New Questions and Future Research
Even though the new ALMA observations shed important light on SN 1987A, there are still several questions that remain. Exactly how abundant are the molecules of HCO+ and SO? Are there other molecules that have yet to be detected? How will the 3-D structure of SN 1987A continue to change over time?

Future ALMA observations at different wavelengths may also help determine what sort of compact object - a pulsar or neutron star - resides at the center of the remnant. The supernova likely created one of these dense stellar objects, but as yet none has been detected.

STELLAR CHEMISTRY
Cosmic 'dust factory' reveals clues to how stars are born
Cardiff UK (SPX) Jul 11, 2017
A group of scientists led by researchers at Cardiff University have discovered a rich inventory of molecules at the centre of an exploded star for the very first time. Two previously undetected molecules, formylium (HCO+) and sulphur monoxide (SO), were found in the cooling aftermath of Supernova 1987A, located 163,000 light years away in a nearby neighbour of our own Milky Way galaxy. The ... read more

Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Counting calories in space

NASA Offers Space Station as Catalyst for Discovery in Washington

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

Dutch project tests floating cities to seek more space

STELLAR CHEMISTRY
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

Aerojet Rocketdyne tests Advanced Electric Propulsion System

Spiky ferrofluid thrusters can move satellites

After two delays, SpaceX launches broadband satellite for IntelSat

STELLAR CHEMISTRY
Curiosity Mars Rover Begins Study of Ridge Destination

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

STELLAR CHEMISTRY
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

STELLAR CHEMISTRY
LISA Pathfinder: bake, rattle and roll

100M Pound boost for UK space sector

Iridium Poised to Make Global Maritime Distress and Safety System History

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

STELLAR CHEMISTRY
WVU to develop software for future NASA Mars rovers, test 3-D printed foams on ISS

ANU invention may help to protect astronauts from radiation in space

Long Duration Experiments Reach 1,000th Day

Spacepath Communications Announces Innovative Frequency Converter Systems

STELLAR CHEMISTRY
Molecular Outflow Launched Beyond Disk Around Young Star

Hidden Stars May Make Planets Appear Smaller

Astronomers Track the Birth of a 'Super-Earth'

Big, shape-shifting animals from the dawn of time

STELLAR CHEMISTRY
Juno Completes Flyby over Jupiter's Great Red Spot

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement