Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Greenland melting tied to shrinking Arctic sea ice
by Staff Writers
Brunswick NJ (SPX) Mar 29, 2016

Rivers of melted ice and a meltwater lake on Greenland on July 19, 2015. Image courtesy Maria-Jose Vinas, NASA Earth Science News Team. For a larger version of this image please go here.

Vanishing Arctic sea ice. Dogged weather systems over Greenland. Far-flung surface ice melting on the massive island. These dramatic trends and global sea-level rise are linked, according to a study coauthored by Jennifer Francis, a research professor in Rutgers University's Department of Marine and Coastal Sciences.

During Greenland summers, melting Arctic sea ice favors stronger and more frequent "blocking-high" pressure systems, which spin clockwise, stay largely in place and can block cold, dry Canadian air from reaching the island. The highs tend to enhance the flow of warm, moist air over Greenland, contributing to increased extreme heat events and surface ice melting, according to the study.

That, in turn, fuels sea-level rise, said Francis, who called rising seas a "monstrous" issue for coastal communities around the world. The increased melting on the Greenland ice sheet in recent years may also be linked to cooler-than-normal ocean temperatures south of the island, slowing ocean circulation.

The study, published online in the Journal of Climate last month, tapped computer models and measurements in the field.

"I think this study does a good job of pinning down the fact that the [Arctic sea] ice is disappearing for a whole bunch of reasons - and that is causing the surface of Greenland's melt area to increase," Francis said.

The Greenland ice sheet holds an enormous volume of frozen water, and the global sea level would rise about 20 to 23 feet if it all melted, the study notes.

Surface melting of the ice sheet has increased dramatically since the relative stability and modest snow accumulation in the 1970s, the study also notes.

Since 2009, most of the increased rate of Greenland ice loss has stemmed from greater surface melting, heightening concerns that sea level-rise could accelerate beyond most projections and boost threat levels for coastal communities, the study says.

Last July 4th, the Greenland melt area covered more than half of its ice sheet for the first time since July 2012, according to the National Oceanic and Atmospheric Administration.

Sea-level rise is already "becoming very conspicuous and it's going to be bad. It's happening faster and faster as my Rutgers colleagues have been measuring," Francis said. "This change is accelerating."

According to Francis, blocking-high pressure systems over Greenland usually form when a lot of warm air is in the Arctic. And so far this year, it's been extremely warm and Arctic sea ice has been at record low levels for this time of year.

The Arctic warmth tends to weaken the jet stream, which typically flows west to east, allowing it to meander more to the north and south, Francis said.

The jet stream can take "such a big northward swing that it actually kind of breaks off and forms a closed circulation," she said. Blocking highs tend to be persistent and are hard to forecast, she added.

"Whenever there's a big melt year in Greenland, on the surface anyway, it's usually because there's either a blocking high or a large northward swing in the jet stream and both of those things tend to be long-lived features in the circulation," she said. Both transport a lot of heat, moisture and clouds over the Greenland ice sheet, leading to more melting.

The increased melting may lead to a slowdown of the circulation in the North Atlantic ocean, she said. A large pool of abnormally cool ocean water south of Greenland that could slow circulation was first observed in late 2013. Time will tell whether it's more than a temporary phenomenon.

Along with Francis, study authors include: Jiping Liu of the University at Albany; Zhiqiang Chen and Mirong Song of the Chinese Academy of Sciences in Beijing, China; Thomas Mote of the University of Georgia; and Yongyun Hu of Peking University in Beijing.


Related Links
Rutgers University
Beyond the Ice Age

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
A glance into the future of the Arctic
Bremerhaven, Germany (SPX) Mar 18, 2016
Throughout the Arctic, ice wedges are thawing at a rapid pace. Changes to these structures, which are very common in permafrost landscapes, have a massive impact on the hydrology of the tundra. This is the result of a study carried out by an international research team in cooperation with the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) which will be published in ... read more

Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Gravity Map Gives Best View Yet Inside Mars

ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

British bacon sandwich en route to ISS tastes out of this world

China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

A new model for how twisted bundles take shape

Local fingerprint of hydrogen bonding captured in experiments

Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.