Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Gravitational Waves Detected for Third Time
by Whitney Clavin for Caltech News
Pasadena CA (SPX) Jun 02, 2017

An international team of researchers has made a third detection of gravitational waves, ripples in space and time, in a discovery that provides new insights into the mysterious nature of black holes and, potentially, dark matter. Credit LSC/OzGrav.

The Laser Interferometer Gravitational-wave Observatory (LIGO) has made a third detection of gravitational waves, ripples in space and time, demonstrating that a new window in astronomy has been firmly opened. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole.

The newfound black hole, formed by the merger, has a mass about 49 times that of our Sun. This fills in a gap between the masses of the two merged black holes detected previously by LIGO, with solar masses of 62 (first detection) and 21 (second detection).

"We have further confirmation of the existence of stellar-mass black holes that are larger than 20 solar masses - these are objects we didn't know existed before LIGO detected them," says MIT's David Shoemaker, the newly elected spokesperson for the LIGO Scientific Collaboration (LSC), a body of more than 1,000 international scientists who perform LIGO research together with the European-based Virgo Collaboration.

"It is remarkable that humans can put together a story, and test it, for such strange and extreme events that took place billions of years ago and billions of light-years distant from us. The entire LIGO and Virgo scientific collaborations worked to put all these pieces together."

The new detection occurred during LIGO's current observing run, which began November 30, 2016, and will continue through the summer. LIGO is an international collaboration with members around the globe. Its observations are carried out by twin detectors - one in Hanford, Washington, and the other in Livingston, Louisiana - operated by Caltech and MIT with funding from the National Science Foundation (NSF).

LIGO made the first-ever direct observation of gravitational waves in September 2015 during its first observing run since undergoing major upgrades in a program called Advanced LIGO. The second detection was made in December 2015. The third detection, called GW170104 and made on January 4, 2017, is described in a new paper accepted for publication in the journal Physical Review Letters.

In all three cases, each of the twin detectors of LIGO detected gravitational waves from the tremendously energetic mergers of black hole pairs. These are collisions that produce more power than is radiated as light by all the stars and galaxies in the universe at any given time.

The recent detection appears to be the farthest yet, with the black holes located about 3 billion light-years away. (The black holes in the first and second detections are located 1.3 and 1.4 billion light-years away, respectively.)

The newest observation also provides clues about the directions in which the black holes are spinning. As pairs of black holes spiral around each other, they also spin on their own axes - like a pair of ice skaters spinning individually while also circling around each other.

Sometimes black holes spin in the same overall orbital direction as the pair is moving - what astronomers refer to as aligned spins - and sometimes they spin in the opposite direction of the orbital motion. What's more, black holes can also be tilted away from the orbital plane. Essentially, black holes can spin in any direction.

The new LIGO data cannot determine if the recently observed black holes were tilted but they imply that at least one of the black holes may have been non-aligned compared to the overall orbital motion. More observations with LIGO are needed to say anything definitive about the spins of binary black holes, but these early data offer clues about how these pairs may form.

"This is the first time that we have evidence that the black holes may not be aligned, giving us just a tiny hint that binary black holes may form in dense stellar clusters," says Bangalore Sathyaprakash of Penn State and Cardiff University, one of the editors of the new paper, which is authored by the entire LSC and Virgo Collaborations.

There are two primary models to explain how binary pairs of black holes can be formed. The first model proposes that the black holes are born together: they form when each star in a pair of stars explodes, and then, because the original stars were spinning in alignment, the black holes likely remain aligned.

In the other model, the black holes come together later in life within crowded stellar clusters. The black holes pair up after they sink to the center of a star cluster. In this scenario, the black holes can spin in any direction relative to their orbital motion. Because LIGO sees some evidence that the GW170104 black holes are non-aligned, the data slightly favor this dense stellar cluster theory.

"We're starting to gather real statistics on binary black hole systems," says Keita Kawabe of Caltech, also an editor of the paper, who is based at the LIGO Hanford Observatory. "That's interesting because some models of black hole binary formation are somewhat favored over the others even now and, in the future, we can further narrow this down."

The study also once again puts Albert Einstein's theories to the test. For example, the researchers looked for an effect called dispersion, which occurs when light waves in a physical medium such as glass travel at different speeds depending on their wavelength; this is how a prism creates a rainbow.

Einstein's general theory of relativity forbids dispersion from happening in gravitational waves as they propagate from their source to Earth. LIGO did not find evidence for this effect.

"It looks like Einstein was right - even for this new event, which is about two times farther away than our first detection," says Laura Cadonati of Georgia Tech and the Deputy Spokesperson of the LSC. "We can see no deviation from the predictions of general relativity, and this greater distance helps us to make that statement with more confidence."

"The LIGO instruments have reached impressive sensitivities," notes Jo van den Brand, the Virgo Collaboration spokesperson, a physicist at the Dutch National Institute for Subatomic Physics (Nikhef) and professor at VU University in Amsterdam.

"We expect that by this summer Virgo, the European interferometer, will expand the network of detectors, helping us to better localize the signals."

The LIGO-Virgo team is continuing to search the latest LIGO data for signs of space-time ripples from the far reaches of the cosmos. They are also working on technical upgrades for LIGO's next run, scheduled to begin in late 2018, during which the detectors' sensitivity will be improved.

"With the third confirmed detection of gravitational waves from the collision of two black holes, LIGO is establishing itself as a powerful observatory for revealing the dark side of the universe," says David Reitze of Caltech, executive director of the LIGO Laboratory. "While LIGO is uniquely suited to observing these types of events, we hope to see other types of astrophysical events soon, such as the violent collision of two neutron stars."

Monash researchers uncover new gravitational wave characteristics
Melbourne, Australia (SPX) May 22, 2017
Monash researchers have identified a new concept - 'orphan memory' - which changes the current thinking around gravitational waves. The research, by the Monash Centre for Astrophysics, was published recently in Physical Review Letters. Einstein's theory of general relativity predicts that cataclysmic cosmic explosions stretch the fabric of spacetime. The stretching of spacetime ... read more

Related Links
Laser Interferometer Gravitational-Wave Observatory
The Physics of Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

John Glenn Cygnus departs ISS begins secondary mission

Studying Flame Behavior in Microgravity with a Solid "High-Five"

SpaceX's first recycled Dragon arrives at space station

SpaceX blasts off cargo using recycled spaceship

India shows off space prowess with launch of mega-rocket

Eutelsat signs new launch contract with Arianespace

Study estimates amount of water needed to carve Martian valleys

Curiosity Peels Back Layers on Ancient Martian Lake

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

Student-Made Mars Rover Concepts Lift Off

Spotlight: First China-designed experiment flies to space station

News Analysis: U.S.-China space freeze may thaw with new commercial pathway

China willing to cooperate in peaceful space exploration: Xi

California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

High pressure key to lighter, stronger metal alloys, Stanford scientists find

Mitsubishi Electric Completes New Satellite Component Production Facility

Space junk could destroy satellites, hurt economies

BAE Systems, Helios to collaborate on liquid armor

Discovery reveals planet almost as hot as the Sun

Hubble's tale of 2 exoplanets - Nature vs nurture

Astronomers discover alien world hotter than most stars

Citizen scientists uncover a cold new world near sun

A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement