Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Graphene slides smoothly across gold
by Staff Writers
Basel, Switzerland (SPX) Mar 02, 2016

A graphen nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low. Image courtesy University of Basel, Department of Physics. For a larger version of this image please go here.

Graphene, a modified form of carbon, offers versatile potential for use in coating machine components and in the field of electronic switches. An international team of researchers led by physicists at the University of Basel have been studying the lubricity of this material on the nanometer scale. Since it produces almost no friction at all, it could drastically reduce energy loss in machines when used as a coating, as the researchers report in the journal Science.

In future, graphene could be used as an extremely thin coating, resulting in almost zero energy loss between mechanical parts. This is based on the exceptionally high lubricity - or so-called superlubricity - of modified carbon in the form of graphene. Applying this property to mechanical and electromechanical devices would not only improve energy efficiency but also considerably extend the service life of the equipment.

Fathoming out the causes of the lubricant behavior

An international community of physicists from the University of Basel and the Empa have studied the above-average lubricity of graphene using a two-pronged approach combining experimentation and computation. To do this, they anchored two-dimensional strips of carbon atoms - so-called graphene nanoribbons - to a sharp tip and dragged them across a gold surface.

Computer-based calculations were used to investigate the interactions between the surfaces as they moved across one another. Using this approach, the research team led by Prof. Ernst Meyer at the University of Basel is hoping to fathom out the causes of superlubricity; until now, little research has been carried out in this area.

By studying the graphene ribbons, the researchers hope to learn about more than just the slip behavior. Measuring the mechanical properties of the carbon-based material also makes sense because it offers excellent potential for a whole range of applications in the field of coatings and micromechanical switches. In future, even electronic switches could be replaced by nanomechanical switches, which would use less energy for switching on and off than conventional transistors.

The experiments revealed almost perfect, frictionless movement. It is possible to move graphene ribbons with a length of 5 to 50 nanometers using extremely small forces (2 to 200 piconewtons). There is a high degree of consistency between the experimental observations and the computer simulation.

A discrepancy between the model and reality appears only at greater distances (five nanometers or more) between the measuring tip and the gold surface. This is probably because the edges of the graphene nanoribbons are saturated with hydrogen, which was not accounted for in the simulations.

"Our results help us to better understand the manipulation of chemicals at the nano level and pave the way for creating frictionless coatings," write the researchers.


Related Links
University of Basel
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Urban soils release surprising amounts of carbon dioxide
Boston MA (SPX) Feb 24, 2016
In the concrete jungle at the core of a city, carbon dioxide (CO2) emissions are dominated by the fossil fuels burned by the dense concentrations of cars and buildings. Boston University researchers now have shown, however, that in metropolitan areas surrounding the city core, plant roots and decomposing organic material in soil give off enough CO2 , in a process termed "soil respiration", to ma ... read more

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

Tools and Talent at Michoud to Complete SLS Core Stage Welding in 2016

Orion Simulations Help Engineers Evaluate Mission Operations for Crew

Orion Test Hardware in Position for Solar Array Test

NASA Space Program Now Requires Russian Language

China to launch second space lab Tiangong-2 in Q3

China's moon lander Chang'e-3 enters 28th lunar day

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

Scott Kelly returns to earth, but science for NASA's journey to Mars continues

Orbital ATK Completes OA-4 Cargo Delivery Mission to ISS for NASA

Send your computer code into space with astronaut Tim Peake

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

SpaceX warns of failure in Wednesday's rocket landing

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

Eco-friendly food packaging material doubles shelf-life of food products

Virtual reality is next as smartphone sales slow

Crystal and magnetic structure of multiferroic hexagonal manganite

Mystery of Dracula orchids' mimicry is unraveled with a 3-D printer

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.