Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















CARBON WORLDS
Graphene from soybeans
by Staff Writers
Canberra, Australia (SPX) Feb 17, 2017


CSIRO Scientist Dr Dong Han Seo, co-author of the study, holds a piece of graphene film. For a larger version of this image please go here.

A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean. Graphene is a carbon material that is one atom thick.

Its thin composition and high conductivity means it is used in applications ranging from miniaturised electronics to biomedical devices. These properties also enable thinner wire connections; providing extensive benefits for computers, solar panels, batteries, sensors and other devices.

Until now, the high cost of graphene production has been the major roadblock in its commercialisation. Previously, graphene was grown in a highly-controlled environment with explosive compressed gases, requiring long hours of operation at high temperatures and extensive vacuum processing.

CSIRO scientists have developed a novel "GraphAir" technology which eliminates the need for such a highly-controlled environment. The technology grows graphene film in ambient air with a natural precursor, making its production faster and simpler.

"This ambient-air process for graphene fabrication is fast, simple, safe, potentially scalable, and integration-friendly," CSIRO scientist Dr Zhao Jun Han, co-author of the paper published in Nature Communications said. "Our unique technology is expected to reduce the cost of graphene production and improve the uptake in new applications."

GraphAir transforms soybean oil - a renewable, natural material - into graphene films in a single step. "Our GraphAir technology results in good and transformable graphene properties, comparable to graphene made by conventional methods," CSIRO scientist and co-author of the study Dr Dong Han Seo said.

With heat, soybean oil breaks down into a range of carbon building units that are essential for the synthesis of graphene. The team also transformed other types of renewable and even waste oil, such as those leftover from barbecues or cooking, into graphene films.

"We can now recycle waste oils that would have otherwise been discarded and transform them into something useful," Dr Seo said. The potential applications of graphene include water filtration and purification, renewable energy, sensors, personalised healthcare and medicine, to name a few.

Graphene has excellent electronic, mechanical, thermal and optical properties as well.Its uses range from improving battery performance in energy devices, to cheaper solar panels. CSIRO are looking to partner with industry to find new uses for graphene. Researchers from The University of Sydney, University of Technology Sydney and The Queensland University of Technology also contributed to this work.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue source from good quality advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames, passwords and payment processes.

Our news coverage takes time and money to publish 365 days a year.

If you find our news sites helpful then please consider becoming a regular supporter of just make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
CSIRO Australia
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
UNIST to engineer dream diodes with a graphene interlayer
Ulsan, South Korea (SPX) Feb 10, 2017
A team of researchers, affiliated with UNIST has created a new technique that greatly enhances the performance of Schottky Diodes (metal-semiconductor junction) used in electronic devices. Their research findings have attracted considerable attention within the scientific community by solving the contact resistance problem of metal-semiconductor, which had remained unsolved for almost 50 years. ... read more


CARBON WORLDS
Art and space enter a new dimension

Air Force doctor solves NASA's poop problem

Next SpaceX mission will deliver slew of experiment payloads to ISS

Endurance athletes: Swig mouthwash for improved performance

CARBON WORLDS
SpaceX blasts off cargo from historic NASA launchpad

SpaceX aborts launch after 'odd' rocket engine behavior

Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

India puts record 104 satellites into orbit

CARBON WORLDS
Researchers pinpoint watery past on Mars

Scientists say Mars valley was flooded with water not long ago

Opportunity passes 44 kilometers of surface travel after 13 years

Scientists shortlist three landing sites for Mars 2020

CARBON WORLDS
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

CARBON WORLDS
Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

CARBON WORLDS
Most stretchable elastomer for 3-D printing

New mechanical metamaterials can block symmetry of motion

Sky and Space signs agreement with US Department of Defence

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

CARBON WORLDS
Hunting for runaway worlds

Exoplanetary moons formed by giant impacts could be detected by Kepler

The heart of a far-off star beats for its planet

Possibility of Silicon-Based Life Grows

CARBON WORLDS
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement