Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Getting a grip on slippery cell membranes
by Staff Writers
Worcester MA (SPX) Jul 01, 2016


To study the forces generated by myosin-1 motors on oily membranes, researchers at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn) strung a motor attached to an actin filament between two fluorescent beads, with the motor's tail resting on a sphere covered with lipids. The filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule. Image courtesy Worcester Polytechnic Institute and University of Pennsylvania. For a larger version of this image please go here.

Within each of our cells is a distribution system that uses molecular motors and filaments to move proteins, organelles, and other tiny bits of cargo along its inner framework, or cytoskeleton. To achieve this feat, the motors and filaments must tug on flexible membranes that surround the cargo packages, but these membranes, made of fatty molecules called lipids, are extremely slippery. Scientists have long wondered how the molecular transport machinery is able to maintain its grip.

The work is important because knowledge of the basic science of molecular motors and membrane mechanics can translate into a better understanding of cell and tissue development, wound healing, and the responses of the immune system - and how cancer cells can spread from a single tumor to other areas of the body.

Thanks to a collaborative research project at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn), the answer is beginning to emerge. Led by Erkan Tuzel, PhD, associate professor of physics at WPI, and Michael Ostap, PhD, professor of physiology at the Pennsylvania Muscle Institute and Penn's Perelman School of Medicine, the team is using laboratory experiments and computational modeling to study the interactions between the motors (made from a protein called myosin-1), the filaments (made from the protein actin), and the membranes.

Their findings are reported in the paper "Force Generation by Membrane-Associated Myosin-1" published online by Nature Scientific Reports.

"To maintain a grip, these myosin-1 molecules need to generate sufficient force against oily membranes," Tuzel said. "How they do that has not been clear. Now we are able to say, 'yes, the numbers make sense and the physics does work.'"

In addition to transporting cargo, cells perform a number of essential functions - from secreting proteins to dividing into two daughter cells - that require the precise manipulation of cellular membranes. The work is done by myosin motors attached to actin filaments, which must grip the membranes and pull against them. This work provides novel insights into how motors keep their grip.

Getting to the bottom of this mystery required the combined skills of Tuzel, a theoretical biophysicist who develops algorithms and computational models that simulate the behavior of complex systems, including living cells, and Ostap, an experimental biophysicist who studies the molecular motors and other structures that power cells. They began collaborating after meeting in 2014 at the Muscle and Molecular Motors Gordon Research Conference.

For the current study, Serapion Pyrpassopoulos, PhD, a researcher in Ostap's lab, strung myosin-1 molecules attached to an actin filament between two fluorescent beads. The tail of the myosin was placed on a sphere covered with lipids using techniques developed by Pyrpassopoulos.

The actin filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule.

Tuzel and WPI graduate student Goker Arpag? took the data from those single-molecule experiments and developed a computational model that could be used to determine what it would take for myosin-1 molecules to effectively manipulate a membrane.

The model showed that a single myosin-1 molecule gripping a single lipid molecule in the membrane is not able to generate the force required to successfully tug on the membrane. In fact, the model predicts, it would take between 69 and 124 myosin-1 molecules, all attached to one actin filament and all working together, to do the job.

The model also predicts that myosin-1 molecules will slip on the membrane's lipid surface at different rates. When some find an area that is easier to grip, others migrate there and hold on collectively, much like a tug-of-war team that bunches up on the rope where it gains a good foothold.

"We also saw that the slower moving myosins seem to help the faster slipping ones by giving them time to move to the area where it was easier to grip," Tuzel noted.

Tuzel and Ostap are continuing their collaboration, planning new experiments based on the predictions of the computer model. "These basic experiments and models are exciting because they provide us with the framework to start asking more physiologically relevant questions," Ostap added, "like what happens to myosin's force-generating properties when it attaches to its cellular cargo."

Research paper: "Force Generation by Membrane-Associated Myosin-1"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Worcester Polytechnic Institute
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Unveiling the distinctive features of a promising industrial microorganism
Daejeon, South Korea (SPX) Jun 22, 2016
Clostridium tyrobutyricum, a Gram-positive, anaerobic spore-forming bacterium, is considered a promising industrial host strain for the production of various chemicals including butyric acid which has many applications in different industries such as a precursor to biofuels. Despite such potential, C. tyrobutyricum has received little attention, mainly due to a limited understanding of its genot ... read more


TECH SPACE
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

TECH SPACE
Curiosity rover analysis suggests Mars has oxygen-rich history

Opportunity is on its Final Science Campaign at 'Marathon Valley'

NASA Weighs Use of Rover to Image Potential Mars Water Sites

NASA Scientists Discover Unexpected Mineral on Mars

TECH SPACE
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

TECH SPACE
Chinese Space Garbageman is not a Weapon

China launches new carrier rocket: state media

China's new launch center to get new viewing areas

United Nations and China agree to increased space cooperation

TECH SPACE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

TECH SPACE
India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Purdue experiment aboard Blue Origin suborbital rocket a success

TECH SPACE
Newborn Planet Discovered Around Young Star

NASA's K2 Finds Newborn Exoplanet Around Young Star

"Electric Wind" Can Strip Earth-Like Planets of Oceans and Atmospheres

San Francisco State University astronomer helps discover giant planet orbiting 2 suns

TECH SPACE
A shampoo bottle that empties completely - every last drop

Getting a grip on slippery cell membranes

Missing link between glass formation and crystallization found

WSU researchers develop shape-changing 'smart' material




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement