Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Getting a grip on exotic atomic nuclei
by Staff Writers
Warsaw, Poland (SPX) Feb 23, 2015


Experiments that will soon get underway at the RIKEN Nishina Center in Japan will verify the accuracy of a new model of atomic nuclei, proposed by Dr. Krzysztof Miernik from the Institute of Experimental Physics.

A new model describing atomic nuclei, proposed by a physicist from the University of Warsaw Faculty of Physics, more accurately predicts the properties of various exotic isotopes that are created in supernova explosions or inside nuclear reactors.

Even with modern accelerators and detectors we are still unable to create and observe many exotic isotopes that are formed in supernova explosions and inside nuclear reactors. As a result, a significant number of atomic nuclei still remain unstudied. Predicting some of their properties has just become easier, thanks to a new model describing atomic nuclei recently published by Dr. Krzysztof Miernik from the Faculty of Physics at the University of Warsaw (UW), Poland.

"These days, when just the list of authors contributing to a publication in nuclear physics sometimes runs nearly as long than the main text of the article itself, papers written by a single author are a true rarity. In this case, the paper is all the more unusual in that a new theoretical model has been presented by an experimental physicist," says Prof. Tomasz Matulewicz, director of the Institute of Experimental Physics at the UW Faculty of Physics.

Modern theoretical models of atomic nuclei fall into two groups: microscopic and phenomenological. Microscopic models try to describe nuclei using the equations of quantum mechanics, which can only be done for nuclei with relatively small numbers of protons and neutrons. Phenomenological models, in turn, do not concern themselves with the details of the underlying physical phenomena, but instead try to identify more general, statistical correlations between various nuclei.

"Descriptions derived from the most basic quantum-mechanical principles can be devised only for simple nuclei, containing no more than a dozen-odd particles. Statistical models, on the other hand, work well only when dealing with truly large datasets. And so there's a problem, because the number of protons and neutrons in most atomic nuclei is somewhere in between: large enough to make precise description impossible in practice, but at the same time small enough that statistical description remains imprecise," Dr. Miernik explains.

Modern physics recognizes four fundamental forces: the gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Gravitation operates between particles that have mass, thereby shaping the Universe on cosmic scales.

Electromagnetism binds negatively charged electrons to positively charged atomic nuclei, forming atoms, which we can see thanks to photons, which are carriers of electromagnetism. The strong nuclear force "glues" quarks together to form protons and neutrons, the main components of atomic nuclei. Compared to these other three forces, the weak nuclear force might seem insignificant.

"Nothing could be further from the truth! Weak nuclear forces play a very important role: it is thanks to them that certain nuclear particles can change into others. If it were not for the weak force, we would not have so many chemical elements in the Universe," Dr. Miernik says.

Stars are the main factories churning out various elements in the Universe. However, the thermonuclear reactions taking place within them are unable to produce atomic nuclei heavier than iron.

Fortunately, thanks to the weak force, something called beta minus decay sometimes takes place within a nucleus: a neutron turns into a proton plus two other particles (an electron and an electron antineutrino, which quickly leave the nucleus). As a result of beta minus decay, the number of protons in an atomic nucleus increases, in each case giving rise to a new chemical element.

"Interesting things happen not only during beta minus decay itself, but also afterwards. The new nucleus may be in an excited state. If it has a relatively even ratio of neutrons to protons, it will probably relase the excess energy by simply emitting gamma radiation. But if the neutrons in a nucleus significantly outnumber the protons, it may emit a neutron. We therefore have a beta decay, followed by a delayed neutron emission," Dr. Miernik explains.

Delayed proton emission is a process of important significance in astrophysics. Supernova explosions release large quantities of neutrons, some of which are captured by atomic nuclei. One of the main pathways producing new elements, responsible for the creation of more or less half of the isotopes heavier than iron, involves precisely this beta minus decay combined with delayed neutron emission.

"Our lack of knowledge about the exotic atomic nuclei that get formed in supernova explosions poses a true obstacle to fully understanding the processes occurring there," Dr. Miernik says.

Delayed neutron emission is also of importance here on Earth: it makes it relatively easy to monitor the progression of nuclear reactions in atomic reactors. If, during uranium decay, all the neutrons were to be released immediately, there would always be a chain reaction, leading to a nuclear explosion. Fortunately, that is not the way things happen. A

lthough just one neutron out of every few dozen emitted by decaying uranium gets emitted with a delay, this small ratio is sufficient for the reaction to be controlled.

Uranium decay can give rise to around 270 different atomic nuclei emitting delayed neutrons. However, actually measuring their properties is a tough task. Because of their short lifetimes, most of these atomic nuclei need to be created artificially.

Moreover, detecting the emitted neutrons, which carry information about how the decay happened, requires the use of expensive and inefficient detectors. As a consequence, modern physics has identified the properties of little more than one-third of all the atomic nuclei in this group.

"Let's look at this from the structural engineer's perspective. If certain atomic nuclei are going to be produced inside a reactor, we would like to know which ones, and how they will behave. A new nucleus could be, for instance, an isotope of krypton, which is a noble gas, or it could just as easily be rubidium, an alkali metal, which will behave completely differently inside the reactor," Dr. Miernik says.

The model of delayed neutron emission which Dr. Miernik has proposed is an extension of the statistics-based models. His key idea was to create a systematic analysis method based on one of the parameters (called nuclear level density) so that the predictions of the model correspond as well as possible to experimental measurements.

The model so devised makes it possible to systematize the atomic nuclei known to date, as well as to anticipate the properties of exotic nuclei that have not yet been studied.

Like every new model, this one will also have to undergo persistent experimental verification. For the time being it has passed a preliminary test, in which the number of number of known atomic nuclei was artificially reduced, and the model's predictions based on this restricted dataset were compared to the known parameters of the nuclei that had been eliminated.

Dr. Miernik expects the first measurements of new atomic nuclei, that can be used to verify the accuracy of the model, to come from experiments that will soon get underway at the RIKEN Nishina Center in Japan.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Faculty of Physics University of Warsaw
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
New data on formation of mysterious chemical gardens
Granada, Spain (SPX) Feb 18, 2015
Recent research which has counted with the participation of the University of Granada Andalusian Institute of Earth Sciences has yielded new data on chemical gardens, mysterious formations produced when certain solid salts (copper sulfate, cobalt chloride) are added to an aqueous solution of sodium silicate. Self-contained chemical gardens are formed through the self-assembly of mineral pr ... read more


TIME AND SPACE
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

TIME AND SPACE
Mars One cuts list of potential colonists to 100

Scientists fail to explain strange plumes spotted on Martian surface

NASA's Curiosity Analyzing Sample of Martian Mountain

Mars Rover Nearing Marathon Achievement

TIME AND SPACE
The ISS Menu: Mayo, Espressos, Booze? Cosmonauts Reveal Their Secrets

London workshop teaches nuts and bolts behind tech

Critical NASA Science Returns to Earth aboard SpaceX Dragon Spacecraft

45th Space Wing, SpaceX sign first-ever landing pad agreement at the Cape

TIME AND SPACE
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

TIME AND SPACE
Russia Launches Fresh Fruit, Oxygen to Crew on ISS

Europe destroys last space truck to ISS

NASA, Space Station Partners Announce Future Mission Crew Members

Camera to record doomed ATV's disintegration - from inside

TIME AND SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX launches deep-space weather observatory

SpaceX cargo craft returns to Earth

High seas force SpaceX to ditch bid to recycle rocket

TIME AND SPACE
Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

Dawn ahead!

Habitable Evaporated Cores

TIME AND SPACE
3-D printing with custom molecules creates low-cost mechanical sensor

See here now: Telescopic contact lenses and wink-control glasses

Getting in shape

Arachnid Rapunzel: Researchers spin spider silk proteins into artificial silk




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.